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Abstract. This paper is concerned with the problem of existence of fixed

points of continuous maps of the closed unit ball of a complex Banach space

into itself which are holomorphic on the open unit ball. We show that if the

Banach space is separable and reflexive and F is the map in question that for

a.e. 9 in [0,2n\ the map e1' F has a fixed point. This result does not hold in

general; hence, additional conditions are imposed which insure the existence

of fixed points in every Banach space. Fixed points of some linear fractional

maps are explicitly computed.

1. Introduction. Let A' be a complex Banach space, U the open unit ball in

X, U the closed unit ball and assume F: U -> U is continuous on U and

holomorphic on U. We denote the set of such functions by UHC. By

holomorphic we mean that F has a complex linear Fréchet derivative at each

point of U. Standard results on these maps and vector valued holomorphic

maps may be found in the book of Hille and Phillips [8].

In a previous paper [6], the authors showed that a biholomorphic map of the

unit ball of a Hubert space into itself has a fixed point. An example of

Kakutani exhibits a homeomorphism (which can easily be modified to a

diffeomorphism) of the closed unit ball of a Hubert space onto itself with no

fixed point. This might indicate that holomorphy is strong enough to always

insure fixed points. However we show in §2 an example of a holomorphic map

F on the Banach space c0 with no fixed point. In fact for no 9 in [0,2tt] does

e  F have a fixed point.

Earle and Hamilton [4] have shown that if F is holomorphic on U in a

general Banach space and F maps U strictly inside U, then F has a fixed point

in U. Their results depend on the fact that one can define a metric on U so

that if F maps U into U and is holomorphic, then F is nonexpansive, and if F

maps Ustrictly inside U then Fis a strict contraction in this metric. This result

is fundamental to our work and we have included some of their results in the

appendix. The appendix is a generalization of some of their work and is due

to L. Harris (unpublished).

§2 contains the main result and is obtained by using a result of Ryan [15]
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on boundary values of vector valued holomorphic functions. We show that if

X is separable and reflexive and if F: U -» U is continuous on V and

holomorphic in U, then e' F has a fixed point in U for a.e. 9 in [0, 2vt]. In §3,

in addition to the assumption of holomorphy we impose several different

conditions that are frequently assumed in fixed point theory for nonexpansive

maps and show that these additional conditions are sufficient to obtain fixed

points. In §4 we compute explicitly the fixed points of certain linear fractional

maps in the space B(H, H ) of bounded linear operators on a Hubert space.

2. Fixed points of holomorphic maps in Banach spaces. We will show that for

\a\ < 1 the fixed points of the map a F are holomorphic functions of a. Then

we study the fixed points of F by considering the boundary values of the

vector valued holomorphic function x(a). Boundary values of such functions

have been considered by Ryan [15]. We begin with

Lemma 2.1. Suppose F: U -* U is holomorphic, and let x(a) — (aF)(x(a)) be

the unique fixed point of a F for \a\ < 1. Then x(a) is a holomorphic function of a.

Proof. By Theorem 2 of the appendix, a F is a strict contraction in the

metric p defined there, so x(a) = limn_>oo(aF)"(0). Let xn(a) = (aF)"(0)

and fix r with 0 < r < 1. We will show that xn(a) converges uniformly to x(a)

in the closed disc \a\ < r. Since a F maps U into the ball of radius r, the results

in the appendix imply that

p((aF)n(u),(aF)n(v))<k"p(u,v)

for all u, v E U, where k = 2/(3 — r) < 1. Hence by the last result of the

appendix,

II*» - *„+»H < p((amO),(aF)"(aF)») < k"p(0,(aF)p(0))

< k"r/(\ - r)

for all \a\ < r, so the sequence of functions [xn(a)} is uniformly Cauchy on

\a\ < r. Also ||xn(a)|| < r for \a\ < r. Hence for every / G A" the dual of X,

the sequence {/ ° xn(ct)} is a uniformly convergent sequence of analytic

functions on \a\ < r which converges to the function / ° x(a), and hence

/ o x(a) is analytic. The equivalence of weak and strong holomorphy [8]

implies that x(a) is holomorphic.

We review briefly the definitions and results of Ryan [15] needed for our

paper. Let tp(T) for 1 < p < oo denote the space of measurable complex

valued functions defined on the unit circle T and such that N if)

= ((2t7)_1 So"\fieie)\Pd9)]/p < oo. e£(F) denotes the space of functions

defined a.e. on T with values in X which are measurable in the norm topology

of X and so that ||/|| G £'(r). If / G ££(r) denote Npif) = Npi\\f\\). For

x G X and y G A" the dual of X, denote by (x,y) the value of the linear

functional y at the point x. Since X is separable, a function / from T to X is

measurable if and only if <[f,y) is measurable for every y E A". Let tx, denote
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the space of functions which are defined a.e. on T with values on X', and so

that <x,/> is measurable for each x G X and ||/|| E tp(T). Again the

separability of X implies that ||/|| is measurable if (x,/) is measurable for all

x E X. In general, tpx,(T) C tx,(T), but we have equality if X is reflexive for

then X' is separable. If / E ££, then <x,/> E &P(T) for each x E X and the

weak integral or Pettis integral of / is a linear functional on X defined by

(x, (?) ^ f(e>9)db^ = £ (x,f(ei9))d9.

We will need the following two theorems of Ryan [15].

Theorem A (Ryan). Let X be separable and f E tpx,(T) for 1 < p < oo. //

(P) S¿* ein9f(ei9)d6 = 0 for n = I, 2, 3, ..., then Np(Fr) < Np(f)for 0 < r
< 1 where

F(z) = ^(P)f       P^-dt.
V '        2ttl V      J\t\=\ t - z

Furthermore N' (Fr — f) -* 0 as r -» 1 and Fr(e' ) -* f{e' ) a.e. in the norm of

X'. Iffis continuous then Fr(e'9) ->/(e   ) uniformly for 9 E [0,27r].

Theorem B (Ryan). Suppose that X is a separable Banach space with dual A".

Let F be analytic in \z\ < 1 with values in X' and assume N^' (Fr) < 1 for 0 < r

< 1 where 1 < p < oo and Fr(e' ) = F(re' ). Then there is a function f

E tx,(T) so that

F{z)= i (P)f    i©.*
V '        2ttly      7|/| = 1 / - z

and furthermore,

Np(f) < 1,        (P) JT2" ̂/(e'0)^^ = 0   /or n = 1, 2, 3, ...

a«í7 / ¿5 uniquely determined modulo a set of measure zero.

We now state our theorem on fixed points.

Theorem 2.2. Suppose X is a separable reflexive Banach space, U is the open

unit ball of X and F: U -* U is continuous on U and holomorphic in U. Then for

a.e. 9 in [0,2tt], e' F has a fixed point.

Proof. For |a| < 1 let x(a) = cxF(x(a)) be the fixed points of otF. We note

again that x(a) is a vector valued holomorphic function of a.

Since ||x(,Vö)|| < r, and Np(xr) = ((2tr)~X f^ \\x(rei9)\\pd9){/p, we have

Np(xr) < 1 for 0 < r < 1 and p > 0. Since x(a) has values in X, the dual of

X', and since X is reflexive, we have by Ryan's Theorem B that there is a

function y E tx* ,(T) = tpx„(T) = tpx(T) so that
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x(a) = ^(P)f       fO-dt,
2ttt       J\t\ = \ t - z

Np(y) < 1 and (P) J02" én9y(ei9)d9 = 0 for n = 1, 2, 3, ....

We may now use Ryan's Theorem A, and since y E tx, we have that

*(«)    i(P)f   M-dt
v '      2tti     ' J\t\ = \ t — a

and x(re'9) ~* y(e' ) a.e. in the norm of X. The proof is finished by noting that

the fixed points of re' F are x(re' ) and that these have a limit as r —> 1 so that

y(e'9) is the fixed point of e' F.

We now show that Theorem 2.2 fails in the nonreflexive space c0. Let

X = cn, the space of complex sequences which tend to zero and with the norm

in c0 the supremum norm. Let F: U -> U be defined by F(zx,z2,z3,... )

= (\,zx,z2,z-i,... ). It is clear that F is holomorphic in the entire space X

since F is simply a translate of the linear shift operator. In fact F is

nonexpansive in the norm and it is well known that F has no fixed points, since

a fixed point must obviously he(\,\,\,...) which is not in c0. In fact note that

ei9F(zx,z2,...) = (zx,z2,... ) implies z, = e'9/2, z2 = e2i9/2, ...,Zj

= (r ¡2, ... ; a point not in c0, so that for no 9 in [0,2tt] does e' F have a

fixed point.

3. Fixed points of holomorphic maps in general Banach spaces. The addition

of a simple geometrical condition to holomorphy yields the following theorem.

Theorem 3.1. Suppose F E UHC and (I — F)U is closed; then F has a fixed

point in U.

Proof. For t E (0,1), let x(t) = tF(x(t)) be the fixed points of the map tF.

Then

\\x(t) - F(x(/))|| = \\tF(x(t)) - F(x(t))\\ <[t-l\ \\F(x(t))\\ <\t-l\.

Hence x(t) - F(x(t)) -> 0 as t -> 1. Hence 0 E (/ - F)U so that F has a

fixed point.

Such arguments are standard for nonexpansive maps and we note the

addition to the hypothesis that F E UH c of a condition such as demicompact

or demiclosed in the appropriate setting will yield fixed points as in the

nonexpansive case. The notions of demicompact and demiclosed are used by

Browder and Petryshyn, [2], [3], [13]. The reader can easily formulate and

prove the corresponding results for holomorphic maps.

Theorem 3.2. Let F E UHC and for 0 < / < 1, let x(t) be the unique fixed

point of tF. Let DFx,r) be the Fréchet derivative of F at x(t). If 1 is not in the

spectrum of DF,^ and \\(I - tDFx^) || = g(t) is integrable on (0,1), then F

has a fixed point in U.

Proof. By Lemma 2.1 x(/) is a differentiable function of /. Hence since
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xit) = tFixit)) we have that

xit) - Fixit)) + tDFx(t)xit),   or   (/ - tDFx(l))xit) = x(t)/t

for 0 < / < 1.

Since ||jt(f)|| < t it follows that \\x(t)\\ < ||(/ - tDFx{t))~X \\ = git). Since the

length of the path of xit) is given by lirn^, Jq ||x(/)|| dt < limJ^1 fcj git)dt

< oo, we see that there is some x so that x(i) —> x as / -» 1 and that

x = Fix).

Following Lumer and Phillips [10], we define a semi-inner-product on X.

The semi-inner-product is a map [•, •] from X X X—* C(the complex numbers)

so that:

(1) [x + y,z] = [x,z] + [y,z],

(2) [Xx,y] = X[x,y],
r for x, y, z in X and À G C.

(3) [x,x] > Oforx # 0,

(4) |[*,.y]|2 < [x,x][y,y]

By the Hahn-Banach theorem, there is a semi-inner-product with \\x\\

= [x,xf2.

Corollary 3.3. Suppose F E UHC, and let

h(t)=  lim+s-l(\\I + sDFx{l)\\- 1),

where xit) = tFixit)) for 0 < t < 1. 7//i(t) < 1 a/W(l - th(t))~X is integrable

on (1 —5, O/o/- some sufficiently small 8, then F has a fixed point in U.

Proof. The condition h(t) < 1 is shown in Lumer and Phillips [11] to imply

that Re[DFx{l)y,y] < h(t)\\yf. Hence

||(7 - tDFx(l))y\\ \\y\\ > Re[(7 - tDFx(l))y,y] = Re[>^] - t Re[DFx{l)y,y]

> \\y\\2-th(t)\\y\\2.

Therefore 7 - tDFx{l) is invertible and ||(7 - tDFx{t))~X || < (1 - th(t))~\ An

application of Theorem 3.2 shows that the length of the path of x(t)

= tF(x(t)) is finite, so F has a fixed point.

The condition in the last corollary is related to pseudo-contractive maps

introduced by Browder [1] and to accretive operators, but is slightly stronger.

To see the connection we suppose for a moment that A = DF,^ is linear and

A is a Hubert space. In our last corollary we have the condition that

Rc(Ay,y) < h(t)\\y\\2. If Re(Ay,y) < \\y\\2 then Re((7 - A)y,y) > 0 or 7

— A is accretive. I — A is accretive if and only if A is pseudo-contractive. So

for linear operators, pseudo-contractive implies the numerical range of A is in

a half plane with real part less than or equal to one. In the corollary we needed
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to restrict the numerical range in a slight shift to the left. If we impose the

condition Re (Ax, x) < k\\x\\ for k < 1, then k~] A is pseudo-contractive. We

use these comments to generalize to the nonlinear case. Following Browder [1]

we say a map G: D -» X, where D is the domain of G and A" is a Banach

space, is pseudo-contractive if for all u, v in D and r > 0,

||«-HI < \\(l + r)(u - v) - r(G(u) - G(v))\\.

Browder and Kato have shown that in the nonlinear setting this is equivalent

to 7 - G accretive. We will essentially require that / - G be strictly accretive,

or, equivalently, following [3], say a map G: D —> X is strictly pseudo-

contractive if for 0 < k < 1 and 0 < X < l/k we have ||(1 - XG)x -

(I- XG)y\\>(l - Xk)\\x -^||. Note when A: = 1 and A = r(l + r)_1wehave

a pseudo-contractive map. Browder [1] and Kirk [10] have used the pseudo-

contractive maps and additional conditions in uniformly convex spaces to

prove fixed point theorems. The relationship of strictly pseudo-contractive

maps to monotone maps, iterative methods for the construction of their fixed

points in Hubert space, and historical remarks may be found in [3]. Extending

the result of Kirk [10] we have the following theorem.

Theorem 3.4. Suppose X is a Banach space, F: U -> U is strictly pseudo-

contractive and the range of (I — XF)U contains an open ball of radius 1 — À

about the origin for some X, 0 < À < 1. Then F has a fixed point in U.

Proof. Let 3^ = I - XF. Then strictly pseudo-contractive implies that

||Txx - Txy\\ < (1 - kX)\\x - y\\ or that Tx~l[Bx_x] C U where Bx_x is the

open ball of radius 1 - À and center 0. Hence (1 - X)TX~] : Bx_x -* Bx_x and

since 1 - À < 1 - kX, (1 - A)7^~' is a strict contraction. Let x E Bx_x be the

fixed point of (1 - A)7^_1. Suppose z = x(l — A) , then Tx(z) = x or

z - AF(z) = x = (1 - A)z or F(z) = z.

Corollary 3.5. Suppose X is a Banach space and F: U —> U is strictly

pseudo-contractive and holomorphic; then F has a fixed point in U.

Proof. We need to show R(I - XF)[U] D Bx_x. Let Fx = AFfor 0 < A

< 1, and let y E Bx_x so that ||.y|| < e(l - X) for some e < 1. Let Gx

= XF + y. Then Gx is holomorphic and maps U strictly inside U. Hence,

Gxx = x = AF(x) +y or (/ - AF)x = y. This shows that R(I - XF)[U]

=> Bx_x.
Remarks. Following Kirk [10] we see that the conditions strictly pseudo-

contractive and Lipschitzian on F will yield the above corollary. Also if the

space is uniformly convex and F is pseudo-contractive on U and holomorphic

in some open ball containing U, and F: U —> U then F has a fixed point in U.

Finally we remark that some of the above results remain true if U is replaced

by a bounded star shaped domain.

4. Linear fractional transformations. We will show that some linear fraction-

al maps have fixed points. Krein [9] showed that there is an interesting relation
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between the fixed points of linear fractional transformations and invariant

subspace problems in a Hubert space with indefinite metric. Phillips [14]

generalized the results of C. L. Siegel [16] and was able to characterize the

linear fractional maps of Krein as biholomorphic maps on the unit ball of

BiH, 77 ), the bounded linear operators on a Hubert space 77, which are in the

identity component.

Helton [7] exploited the relation between invariant subspaces and fixed

points established by Krein and Phillips and characterized those maps of

Phillips having fixed points in the interior of the unit ball. L. Harris has

considered biholomorphic maps on the unit ball of 5(77,77 ) and was able to

characterize such maps by h(Z) = L ° TS(Z) where L is a linear isometry and

ts(z) = (7 - ss*yx/2(s - z)(i - s*zyx(i - s*sf2

and ||5|| < 1. For a discussion of this result and its relation to the result of

Phillips see Harris [5].

We are able to show that TS(Z) has a fixed point in the interior of the unit

ball and in fact are able to explicitly compute the fixed point. Note that this

is equivalent to solving a rather complicated "quadratic" equation in opera-

tors.

Theorem 4.1. The map TS(Z) = A~l/2(S - Z)(I - S*Z)_1 Bl/2 (where

A = I - 55*, B = 7 - S* S, and \\S\\ < 1) is a biholomorphic map of the unit

ball of B(H, 77 ) onto itself and the point K = S (I + B^2)~X is a fixed point of

Ts inside the unit ball.

Proof. First note that A and B are positive operators and 0 < A < 7, 0

< B < I, so that B has a positive square root and (7 + B' ) has norm less

than one so that ||7<|| < 1.

We will show that (5 - 7<)(7 - 5*70"' = Al/2KB~l/2. Now

iS - K)(I - S*K)-y = [S- Sil + 7,l/2r'][7 - S*S(I + Bl/2)~]]~]

= S[I - (I + 7?1/2r'][7 - (7 - Bl/2)]~l

= 5(7-(7 + 51/2)"')7i-1/2.

Note that for any positive integer n, S(S*S)" = (55*)" 5 and hence for

l|5|| < l,if2^nz" converges in the unit circle we have 2 anS(S*S)"

= 2 an(SS*)"S. Or for/analytic on \z\ < 1, Sf(S*S) = f(SS*)S and, in
particular, 5(7 - S*S)i/2 = (I - SS*)l/2S. Hence

SBl/2 = AX/2S = 5(7 + 7i1/2 - 7)   or

Al/2S(I + Bl/2)~X = S[I - (I + Bl/2)~1].

Multiply by B~1'2 and use the relation obtained above to see that (S - K)

■ (I - S*K)~l = Al/2KB~l/2, so that K is a fixed point.
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In closing we mention without proof the following partial result obtained in

joint work with L. Harris in Hubert space. Suppose F: t/ —>• C/ is continuous

on U and holomorphic in U. In case the approximate fixed points x(t) of the

map tF. 0 < t < 1, satisfy either of the following two conditions

(a) \\x(t)\\ < r < 1,

(b) \\x(t)\\ > t" for some n > 1 as / —> 1, then F has a fixed point.

The authors thank Frank Massey and L. Harris for helpful discussions. The

first author wishes to thank Ralph Phillips for bringing to his attention the

problem of Krein while the first author was on a sabbatical leave at Stanford

which initiated interest in the problems of this paper.

Appendix. These results are due to L. Harris and generalize the results of

Earle and Hamilton [4]. In a related way, Marsden [12] has used the semigroup

structure of a flow to define a metric in which the flow is globally well

behaved.

Theorem 1. Let ty be an open connected subset of a normed linear space X and

let % be a semigroup of continuously differentiable functions h: ty —* ty, where the

semigroup operation is composition of functions. Suppose that the map x

-> supAeg||D/i(x)|| is locally bounded. Then there is a metric p on ty with

p(h(x),h(y)) < p(x,y) for all h G % and all x, y G ty. Moreover p(x,y)

^ \\y ~ x\\ for all x, y E ty, and given a point in ty there is a neighborhood 0 of

the point and a real number M such that p(x,y) < M\\x — y\\ for all x, y G 0.

Conversely, it is easy to show that if p is a metric on ty which satisfies the

conclusions of the above theorem, then the map x -* supheSi\\Dh(x)\\ is locally

bounded. If ty is bounded, the semigroup S of all holomorphic functions

h: ty -* ty satisfies the above hypotheses; for if x G ty, there exist r, R

> 0 with B2r(x) G ty G BR(0). Hence given y E Br(x), we may apply the

Cauchy estimates on Br(y) to any function h E § to obtain ||ß/i(.y)|| < R/r.

Thus jc -» suph&%\\Dh(x)\\ is locally bounded. Clearly the topology generated

by the metric p is equivalent to the norm topology.

Proof. We may suppose that the identity map 7 is in §. Define

a(x,y) = sup\\Dhix)y\\
AeS

for x G ty and y G A. Let y be a continuous curve in ty whose derivative is

continuous except possibly at finitely many points. (We call such a curve

admissible.) Since the range of y is compact, there is an M with ||7J>/2(y(í))||

< M for all h E § and 0 < t < 1, so a(y(t), y'(t)) < M\y'(t)\ for 0 < t < 1.

Define L(y) = J*0 a(y(t), y'(t))dt and take pCx-,.v) = inf{L(y): y admissible,

y(0) = x, y(\) = y). It is easy to show that p is a metric. Suppose h E S and

let u G ty and v E X. Then by the chain rule, for any g E S,

\\Dg(h(u))Dh(u)v\\ = \\D(g o h)(u)v\\ < a(u,v)

since fe> is a semigroup. Hence
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(*) a(h(u),Dh(u)v) < a(u,v).

Now let y be an admissible curve with y(0) = x and y(l) = y. Then x ° y is

also an admissible curve and (h ° y)(0) = h(x), (h ° y)(l) = h(y). By the

chain rule,

L(h o y) = £ a((h o y)(t),(h o y)'(t))dt = /J a(h(y(t)),Dh(y(t))y'(t))dt

<  C a(y(t),y'(t))dt = L(y),

where the last inequality follows from (*). Hence p(h(x), h(y)) < p(x,y).

To see that p(x,y) > ||.y - x||, let y be an admissible curve in 6D with

y(0) = x and y(l) = y. Then

L(y) = /J a(y(i),y'(t))dt > /J \\y'(t)\\dt > | /J y'(i)dt

= HtO) - Y(0)ll = lb - *||,

so    p(x,y) > ||_y - x||.    (It    is    obvious    that    a(u,v) > \\v\\ for u E % v

E X since I E S.)

Finally, let p be a point of |3D. Then there is a ball 0 with center p and a

constant M with supAeS||Z)/i(x)|| < M for all x E 6. Let x, y E 6 and put

y(/) = x + t(y - x). Then

<*(y(t),y'(t)) = sup||Z7%(r))y'(/)|| < M\\y - x\\,
h£§

SO

p(x,y) < L(y) = /J «(y(/),y'(/))^/ < M|b - x||

for all x, y E &.

An il G S is said to be a (C)-element of 8 if there is a t > 0 such that the

function x —* h(x) + t[h(x) — y] belongs to S whenever^ E 6i).

Theorem 2. Suppose S satisfies the hypotheses of Theorem 1 above. If h is a

(C)-element of%, then

a(h(x), Dh(x)v) < ka(x,y)   and   p(h(x),h(y)) < kp(x,y)

for all x, y E °D and a// f E X, where k = (I + l)    . Moreover, if X is complete,

then h has a fixed point in 6D.

Proof. Let x E DD and define g(_y) = /¡(.y) + t[h(y) - h(x)] fot y E 6D. By

hypothesis, g E S, so by (*),

a(g(x), Dg(x)v) < a(x,f),    i.e.    a(/i(x),(l + t)Dh(x)v) < a(x, f)

for all v E X, as desired. It is easy to modify the corresponding argument in
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the proof of Theorem 1 to show that the last inequality implies that

p(h(x),h(y)) < (1 + tylp(x,y).

The last part of the theorem follows immediately from the contraction

mapping theorem.

For example, suppose ty is bounded and that h: ty -» ty is a holomorphic

function which maps ty strictly inside itself (i.e., there is an e > 0 such that

\\KX) - y\\ > e whenever x E ty and y $ ty). Then it is easy to see that h is

a (C)-element of the semigroup S of all holomorphic functions /: ty -» ty, and

consequently the conclusions of Theorem 2 hold. (This is the main result of

W.)
Remark. If ty is the open unit ball of a normed linear space and if S is a

semigroup of holomorphic functions mapping ty into ty, then

11*11 < pi0,x) < tanlf ' ||*||

for all * G ty.

Proof. Given x G ty with x # 0 and h E S, by the Hahn-Banach theo-

rem there is an / G A* with l(Dhix)x) = ||Z>A(jc)jc[| and ||/|| = 1. Define

f(z) = /(/i(.z*/||*||)). Clearly/is an analytic function in the disc \z\ < 1 in the

classical sense and satisfies |/(z)| < 1 there. Then, as is well known, |/'(ll*ll)l

<(i-iwi2r\so

\\Dhix)x\\ < ||*||/(1 - ||*||2).

Thus a(*,*) < ||*||(1 - ||*|| ) for all * G ty. Therefore given * G ty and

taking y(/) = tx for 0 < t < 1, we have

p(0, *) < L(y) = J   ctitx,x)dt = J   -aitx,tx)dt

< C 11*110 - t2\\xfyXdt = \\og\±M = tanh-'lkH.

Note that the inequality log(l + t) < t implies that

tanh~'r < r(l - r)~l    for 0 < r < 1.
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