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Abstract. In this paper we prove the existence of ^-equilibrium stationary

strategies for non-zero-sum stochastic games when the reward functions and

transitions satisfy certain separability conditions. We also prove some re-

sults for positive and discounted zero-sum stochastic games when the state

space is infinite.

Introduction. A stochastic game is determined by five objects: S, A, B, q, r.

Here S is a nonempty Borel subset of a Polish space, the set of states of the

system. A is a nonempty Borel subset of a Polish space, the set of actions

available to player I; B is the set of actions for player II. The law of motion q

associates Borel measurably with each is, a, b) E S X A X B a probability

measure on the Borel subsets of S. Let r¡(s, a, b), i = 1, 2, be the reward

functions for I and II, respectively, when s is the state and a, b are the actions

of I and IL As a consequence of the actions chosen by the players, two things

happen: players I and II receive rxis, a, b), r2is, a, b) and the system moves to

a new state s' according to qi-\s, a, b). Then the whole process is repeated

from the new state s'. The problem is to find whether they have suitable Nash

equilibrium strategies.

A strategy II for I is a sequence (II,, TL2, . . .) where Hn specifies the action

to be chosen on the Aith day depending on the past history. A strategy n is

called stationary if there is a Borel map /: S -> PA (the class of all probability

distributions on A) such that Iln = / for all ai. Similarly, strategies and

stationary strategies are defined for II.

Let ß be a fixed number with 0 < ß < 1. A pair (n, T) of strategies for I

and II associates with each initial state s an nth day expected income

r^"\Tl, T)is) for player ¡' and a total expected discounted income for player i:

00

7,.(n,r)(.)= 2 j8"-'r/w(n,r)(i).
n=\

In case rx= —r2 = r, we will call such games discounted zero-sum stochastic

games. In case r > 0 and ß = 1, we will simply call them positive stochastic

games.

Let p be a fixed probability distribution on S. We call (II*, T*) a

/^-equilibrium pair if
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p{s:IxiU*, T*)(s) > 7,(n,r*)(j)    for ail n,

72(n*, r*)(i) > 72(n*, r)(j)  for ail r} = 1.

[Here, in general, the set in braces need not be Borel measurable, but it will

be universally measurable.]

For the case rx = — r2, U* is optimal for I if

7 (IP, r)(j) > inf sup 7 (n, T)is)    for all T and s,
r    n

and T* is optimal for II if

7 (IT, T*)(s) < sup inf 7 (II, r)(j)    for all n and s.
n    r

If inf sup 7(n, T)(s) = sup inf 7(n, T)(s), we call this function the value

function for the stochastic zero-sum game.

Now we shall prove the following theorems.

Theorem I. Let S = [0, 1], A = {1, 2, . . ., k}, B = {1, 2, . . . , /}. Let

yais> '>/) = 8ais< 0 + ka(s,j), a = 1, 2, where ga, ka are bounded measurable

functions in s, for all i G A, j E B. Let q(-\s, i,j) = J- [q'(-\s, i) + q"(-\s,j)]

where q', q" are probability measures and further are measurable in s for each

i E A,j E B. Then for any probability distribution p on [0, 1] with

q(-\s, i, j) <Sp for all s, i, j

and for any 0 < ß < 1 there exists a p-equilibrium stationary pair HI*, T*)for

the two players.

Theorem 2. Let S be any Borel set and A, B be finite sets. Let q(-\s, i,j) be

measurable and rx = — r2 = r be a nonnegative bounded measurable function on

S. Further suppose I (II, T)(s) < k for all n, T, s. Then the positive stochastic

game has a measurable value function and player II (minimizer) has an optimal

stationary strategy.

Theorem 3. Let S be complete separable and A, B be separable metric

spaces. Let s —* A (s), s —» B(s) be compact valued mult ¡functions from S —> A,

S —> B respectively. Here A(s), B(s) is the set of actions available to I and II at

state s. Let r: S X A X B -^ R' be measurable in s and continuous in (a, b).

Assume that q(-\s, a, b) is measurable in s and continuous in (a, b) in the sense

that qi-\s, a„, bn) -» qi-\s, a0, b0) weakly whenever (an, bn) -» (a0, ¿>0). Finally,

suppose that the multifunctions s^> F(s) = PA^ and s^G(s) = PB,S) are

measurable. Then the discounted zero-sum stochastic game has a measurable

value function and the two players have optimal stationary strategies.

Remarks. When S, A, B are finite, Theorem 1 is true without any

restriction on yx, y2 and q [10], [13]. Theorem 2 is also known when S, A, B

are finite [12], [9]. A particular case of Theorem 3 is contained in [8]. The real

problem in Theorem 1 is to topologize the space of strategies so that it

becomes a compact metric space and so that sequential arguments and fixed

point theorems could be applied. For the proof of Theorem 1 we need the

following fac(s. Let M, and M2 be the space of all measurable functions from

S —> PA  and S—> PB respectively.  Following Warga [15] we shall regard
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M,-after identifying functions coinciding almost everywhere-as a closed

convex subset of the dual space of Rk valued integrable functions. With the

weak* topology, M, and, in a similar fashion, M2 are compact metric.

The proof of Theorem 1 follows from the following lemmas.

Lemma 1. For every stationary strategy g for player II the operator Tg defined

by

rx{s, p, gis)) + ßju{s') dq{s'\s, p, gis))

is a contraction operator on the space of bounded measurable functions on [0, 1].

T : u —»max

Lemma 2. Let ug be the fixed point of the operator Tg.  There exists a

measurable function f: S —> PA such that

«*(*) = rx{s,fis),gis)) + ßfug{s')dq{s'\s,fis),gis)).

This follows from a selection theorem due to Olech [7].

We can similarly define operators Lf and fixed points vfis) for the function

Lemma 3. Let t: Mx X M2-> 2M,xM2 (a/7 nonempty u*-closed convex subsets

of M, X M2).

r:if,g)^{if',g'):ugis) = rx(s,f'(s),g(s))

+ ßfug(-)dq(-\s,f'(s),g(s))a.e. and

vf(s) = r2{s,fis),g'is)) + ßfvf{-)dq{-\s,fis),g'is))a.e. ).

The map t is upper-semicontinuous.

Proof. Since Mx is metrizable we can restrict ourselves to sequential

arguments. Let (/„, gn) -+ (/°, g°) and (£, g*n) G t(/„, gn) with (£, g*) -*

if*, g*). We have to show that if, g*) E t(/°, g°). We have

"fe = rx(s,f:(s),gn(s)) + ßf ugn(s') dq{s'\s,f:{s),gn{s))    a.e.

«fc = r2(s,fH(s),g*(s)) + ßfvfJs') dq{s'\s,fn{s),g:{s))    a.e.

Since {ugJ is a uniformly bounded subset of L, it has a convergent

subsequence-without loss of generality {ug } itself-converging in the w* sense

to some u0. Let

£ is) = (#»>(,), . . . , |<»>(s)),     f*is) = (£, is), ..., £,(,)).

gn{s) = (,}->(,), . . . , n,"^)),   g°is) = {Vx{s), ..., r,,is)).

Kis, i) = \ fuj-)dq'i-\s, i),    W¿is, i) = i ]"«„(•) ̂'(-Ií, i).

^'>J) = \ fuj-)dq"(-\s,j),    W¿'(s,f) = I |«0(.) ¿jr*(.|5,y).

Since a = j(ö' + <?") « /? it follows that <?' «: p, q" « /a. Further u^ -h> u0 in
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the weak* sense and hence W^is, i) —> lV¿is, i) and rV¿'(s, j) -» W¡¡is, j)

pointwise. Since 0 < ¡¡¡"(s) < 1, for any integrable function h and for every

fixed /',

\jh(s)W^(s, i)i" (s) dp(s) -fh(s)W¿ is, Oft (J) dpis)

<f\his)W^s,i)- his)W¿is,i)\dp

The first expression on the right goes to zero by the dominated convergence

theorem. The second expression goes to zero since each ^n\s) itself converges

to £,(i) in the weak* sense. Hence we can conclude that

/«*.(•) M'M ('), &,(*)) -/«<>(• ) dq{- \s,f*is), g°is))

in the weak* sense. Similarly /-,(i, /*(.$), gnis)) -» r,(j, f*is), g°is)) in the

weak* sense. Hence we can conclude that

«oí» = r1(í,/*(í),g°(í)) + ßfu0(-)dq(-\s,r(s),g°(s))   a.e.

Now we will prove that

u0(s) = max   rx(s, ft, g°(s)) + ßju0(- ) dq(- \s, /x, g°(j))      a.e.

Observe that

"g„(J) > >-iis,i,gnis)) + ßf"gS-)dqi-\s,i,gnis))    for all/ G>1,î G S.

Hence we can conclude that

k0(j) > rx(s, i, g°(i)) + ßfu0i- ) dq(- \s, i, g°(s))    a.e.

Hence u0is) satisfies the above functional equation a.e. Using a similar

argument for vf one can prove

t>o(*) = r2{s,fis), g*is)) + ßfv0(s') dq(s'\s,f°is), g*is))   a.e.

r2(s,fis),X) + ßfv0is') dq(s'\f(s),\)= max a.e.

This shows that if*, g*) G t(/°, g°).
We can imitate the same proof to show that t(/, g) is a closed set for each

(/. g).

Lemma 4. There exists a p-equilibrium stationary pair if0, g°) for the two

players.

Proof. The conditions of Kakutani-Glicksberg's fixed point theorem are

satisfied for the map t in Lemma 3 [4]. Hence there exists an if0, g°) E

t(/°, g°). Namely
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u0(s) = max   rx (s, p, g°(s)) + ß fu0(s') dq(s'\s, u, g°(j))

= rx(s,f°is),g°is)) + ßfuQis') dq(s'\s,f(s),g°(s))   a.e.,

249

a.e.

v0is) = max
A

r2(s,f°(s),X) + ßfv0(s')dq(s'\s,f(s),\) a.e.

= r2(s,f°(s),g°(s)) + ßfv0(s') dq(s'\s,f°is),g°is))   a.e.

Now we can assume the above equations to be exact over a set S, of p

measure 1. Since q(-\s, i,j) </», í(S,|í, /',/) = 1 for all s, i,j. We can view

the problem as a dynamic programming problem on Sx and hence we can

conclude from Blackwell's Theorem (6f) in [2] that

k0(í) = max 7,(n, g°)(s) = 7,(/°, g°)(s)    for all s E Sx,

v0(s) = max 72(/°, T)is) = 72(/°, g°)(s)    for all s E Sx.

The equalities asserted above have in them maxima taken over plans in the

dynamic programming problem and they are still true even if we allow

behaviour strategies of the game problem. This can be done as in [6, Theorem

3.1]. This establishes that (/°, g°) is a /»-equilibrium pair. This completes the

proof of Theorem 1.

Remark 1. We are unable to prove the theorem when rx, r2 and q do not

satisfy the separability conditions.

Remark 2. The notion of/»-optimality as formulated in this paper is due to

R. Strauch [14].

Proof of Theorem 2. Let 0 < ßn < 1 be any sequence increasing to 1.

From [8, Theorem 3.2], it follows that

v„(s) = min max
"w X       f

= max mm

r(s, n, X) + ß„fv„(s') dq(s'\s, ¡x, X)

r(s, u, X) + ßnfvn(s') dq(s'\s, ¡x, X)

Since 7(n, T)(s) < K for all n, Y, s, the t>„'s are bounded. Also the ü„'s are

monotone nondecreasing. Let vn —* v. We will show that v is the value of the

positive stochastic game. Let /„ be optimal for 7 for the game corresponding

to ßn. We have

/„(/„, Y)(s) > vn(s)    and    7(/„, I» > /„(/„, T)(s).

Here the income In corresponds to the case ßn and 7 refers to the case ß = 1.

Thus sup inf 7(n, T)(s) > v(s). We will now show that

inf sup7(n, T)(s) < vis).

Since A, B are finite,

v(s) = min max7 AM

= max mm
M A

= max

r(s, ¡i, X) + jv(s') dq(s'\s, jti, X)

r(s, ¡i,X) + I v(s') dq(s'\s, [x, X)

(s, u., g(s)) + jv(s') dq(s'\s, ft, g(s))
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Here the existence of such a Borel measurable g follows from the theorem of

Olech [7]. From a result of Blackwell [1] on positive dynamic programming it

follows that

vis) = snp IiU,g)is).
n

This equation is valid even for behaviour strategies of the game problem [6].

Hence we have

vis) = inf sup 7(n, T)(s) = sup /(Il,g)(s) = sup inf 7(n,g)(s).
r    n n n     r

This proves that the game has a value and player II has an optimal stationary

strategy.

Remark. Player I (maximizer) need not have an optimal stationary

strategy. For an example see [8], [14].

Proof of Theorem 3. It follows along similar lines as in [8]. However one

has to rely on the following selection theorem proved recently [5].

Selection Theorem [5]. Let (5, &) be a measurable space, X a separable

metric space and Y a separable metric space. Let u: S X X —» Y be a function

measurable in s and continuous in x,T: S —> X, a measurable multifunction with

compact values and g: S -+ Y a measurable function such that gis) E m(ä X

Vis)) for all s E S. Then there exists a measurable selector r: S -> X for V such

that gis) «■ u(í, ris)) for all s in S.
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