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REDUCTION OF SYSTEMS OF LINEAR
EQUATIONS IN ORDINAL VARIABLES

J. L. HICKMAN1

Abstract.    In this note we are concerned with a general finite system
n-\

(S) ^XiUj, - ßp,      j<m,

of m linear equations in n variables, where the a, and the ß, are positive

ordinals, and the variables x¡ range over ordinals.

In the particular case n = 1 we show that (S) can be reduced to a

canonical form (S* ) having solutions of a relatively simple type, and we use

(S* ) to obtain the solution-set of (S).

In the general case we show that (S) can be reduced to a finite sequence

of single-variable systems, and again obtain the solution-set of (S) in terms

of the solution-sets of these simpler systems.

We assume a knowledge of the elementary theory of ordinal arithmetic,

such as may be found for example in [2],

Ordinals will generally be denoted by lower-case Greek letters, with finite

ordinals (natural numbers) being denoted by lower-case Latin letters; the first

transfinite ordinal will always be denoted by "w".

For a > 0, let a = 2?=n <°e c¡(a) be the (Cantor) normal form of a. We

put 1(a) = n + 1 (the "length" of a), e(a) = e0(a) (the "degree" of a),

c(a) = c„(a), and r(a) = we"'a'. Of course r(a) is the smallest positive remain-

der of a, and a is a successor if and only if r(a) = 1. Finally, if r(a) = 1, then

we put 7(a) = 2"-¿ ueMc¡(a).

We note that for all a, ß > 0 we have either l(aß) = liß) or else

l(aß) = 1(a) + ¡iß) - 1, and that liaß) = ¡iß) if and only if either 1(a)

= 1 or riß) > 1. These facts can easily be verified by expanding a and ß into

normal form and multiplying out.

We require the following results on right-divisors of ordinals; these are (in

essence) set forth in [1],

Result 1. A nonzero limit ordinal a is a right-divisor of a nonzero (limit)

ordinal ß if and only if the following hold:

(a) lia) = l(ß);  '

(b) There is some 5 < e(r(ß)) such that 8 + e¡(a) = et(ß) and c¡(a)

= Cj(ß) for every /' < 1(a).

In connection with the above, we note that if a is a nonzero limit ordinal

and ô is any ordinal, then xpa = usa for any ordinal ^ with us < \p < <•>     •
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For we have uV = usc + y for some positive number c and some ordinal

y < tos, and we also have a = 016 for some positive ordinal 6. But then

<//a = ((cosc + y)w)0 = ((coAc)co)0 = coáco0 = coSa.

Result 2. Let a be a successor ordinal of length p + 2. Then a is a right-

divisor of a nonzero ordinal ß if and only if the following hold:

(a) ¡iß) >p + 2;

(b)c(a) divides c +xiß);
(c) wVi(/»)/(a) = 2f_0 uei(ß)Ciiß).

In this case the equation xa = ß has a unique solution.

Consider the system

(SI) xaj = ßy,      j < An,

of ah linear equations in 1 variable. Obviously if (SI) has a solution, then we

have

(Cl) aj right-divides ßy,       j < aai.

Theorem 1. Let the system

(SI) xaj = ßy       j < aai,

of m linear equations in 1 variable satisfy condition (Cl). Then there is a system

(SI*) yaj = ry       j < aai,

swcai that:

(1) liptj) = I'{tj) for every j < aai;

(2) // (S1* ) has a solution, then it has a solution y = us for some 8;

(3) (SI) has a solution if and only if the following hold:
(I) (SI*) has a solution;

(II) For all i,j < aai such that ria¡) = r{a■■) = 1 we have

(«a) cia^ißj) = cia^ißt),

where q¡ = l{a¡) - 1 and qj = /(ay) - 1;

V{d*lMck{ßi)iKat)<k<t<ßl))
(lib)

= I1{^^ckißj);liaj)<k<lißJ)}.

Proof. We define the Tj as follows. If r(a,) > 1, put t¡ = /?•. Otherwise, put

^-1

T, = ( 2o ̂ (^)c,(r5/)) + uMtodpj\

where /a = /(a^) - 1.

This defines (SI*): since (SI) satisfies (Cl), it follows from Result 1 that

(SI*) satisfies condition (1).

We now consider two cases.

(A) A"(a ) > 1 for every y < aai. From the above definition of the 7, we see

that (SI*) is simply (SI), and from this and our assumption on the riaj),
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condition (3) follows trivially. It therefore suffices to demonstrate (2), and so

we assume that (SI*) has a solution, y = ip. Now there is an ordinal Ô such

that us < \p < wi+1 ; since r(aj) > 1 for each/, the remark following Result

1 tells us that \¡/aj = usotj for each/. Thus y = ws is also a solution.

(B) r(aj) = 1 for some/ < m.

We commence by proving (2); thus let y = \¡/ be a solution of (SI*). From

the remark following Result 2, we see that y = \p is the only solution of (SI*),

and so we must show that \p = us for some 8.

Choose/0 < m such that r(o,<.) = 1. From (1) we have /(a,-) = Ify)

= /(t/'Oiyo), and so from the remark preceding Result 1 we have that /(^) = 1,

that is, \p — usb for some 8 and some nonzero number 6. However, we also

have 6c(ayo) = c^a^o) = cpÍTj°) = 0(0^-0), where p = /(a,-) - 1. Hence 6

= 1, and so \p = us as desired.

It remains to demonstrate condition (3). Thus suppose that x = \¡/ is a

solution of (SI), and let 8 be such that us < \p < <o5+1. If riaß > 1, then as

before we have usotj = \paj = ß, — r¡. If, on the other hand, /-(a,) = 1, then

we have usaj = w 7(ay) + wsc(oj): we must show that the right side of this

equation is in fact t¡. Put \p = to 6 + y for some nonzero number 6 and some

y < ws; then /J; = \pa¡ = usI(aj) + u>sbc(aj) + y. From this it is easily seen

that if we set/» = ¡(aß - 1, then

S = epißj)   and    <oá7(a;) =  2 <*«{ßj)M).
1=0

Hence we do indeed have w a = r. Thus y = us is a solution of (SI*), and

so (I) holds.

With x = \p as above, we now have to demonstrate (II), and so we take

/',/ < m and assume that ria¡) = /-(a^) = 1. As above we have ßj = wsIiaj)

+ os bciaj) + y, with of course a similar expression for /?,. Thus /?,, ßj have the

common remainder y, and since /(y) = lißj) — /(ay) = /(/?,■) — /(«,), this

establishes (Nb). But the same expressions for /?, and ßj tell us that

cq.ißi)/ciai) = 6 = cq{ßj)/ciaj), with ¿7,, <?, as in (Ha). This establishes (Ha).

Suppose now that (I) and (II) hold, and let y = o be a solution of (SI*).

From our assumption that /-(o^) = 1 for some/ < m it follows that v = a is

the only solution of (SI*), and so from (2), which has already been established,

we conclude that a = w  for some 8.

Take a particular /' < m for which /-(a,-) = 1, and put p = /(a,) - 1, q

= lißj) - 1. Now define a number 6 and an ordinal y by 6 = cpifi¡)/cia¡)

and y = 2 W!k^ckißi);p < /c < ¿7}. By assumption, (SI) satisfies (Cl);

thus by Result 2 6 is well defined and is positive. Furthermore, (II) tells us that

6 and y are independent of the particular choice of /'.

Now for any such i we have aa, = t¡, whence from the definition of t, we

see that 0 = e(r(r;)) = epißt), p as above. Hence y < o, and we now put

\¡/ = ob + y. We claim that x = v// is a solution of (SI). For if r(ay) > 1, we

have if/aj = usaj = i) = ßj, since wá < \p < ws+1. On the other hand, if

riaß — 1, then \paj = ws7(a/) + wá6c(ay) + y = ßj. This proves our theo-

rem.

Corollary. Assume that the system
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(SI) xaj = ßy      j < aai,

with a:, ßjpositive ordinals, has a solution. Then:

(1) If r{a¡) > 1 for every j < aai, then x = u> is a solution of (SI) if and only

if (jùS < xp < co      for some 8 such that 8 + e{aj) = e{ß:) for every j < aai.

(2) If riaf) = 1 for some i < aai, then (SI) has the unique solution

x = ^<3'\cp(ßi)/c(ai)] + 2 {<oe*(A)c*(A-);/> < k < q},

where p = l(a¡) - 1, q = /(/?,) - 1.

Theorem 2. The system
n-\

(S) 2 x¡a¡j = ßy,      j < m,
;=0

with a¡¡, ß: positive ordinals, has a solution if and only if there are numbers

f'o < /j < ■ ■ • < is < ai and ordinals p¡kj, k < s, with ßj = 2£=o Pijfor e^ry

j < aai, such that the s + 1 systems

iSk) xikaiJ = p¡ü;      f<m,k<s,

all possess solutions.

Proof. The sufficiency of the condition is clear, since if each (SA) has a

solution x¡ = \pk, then a solution of (S) is given by x¡ = \¡/k if i = ik for some

k < s and x¡ = 0 otherwise.

The necessity is proved by induction on ai, the case ai = 1 being trivial. Thus

take t > 1 and assume that the necessity has been proved for every ai < t.

Suppose that the system (S) with ai = t has a solution x¡ = y¡, i < t. As each

ß: is positive, we must have y, > 0 for some i < t. Let i ° be the largest such

/, and for eachy < aai define pj, t, by pj = y,°a(°y and ^ = 2,=ö Y/%- Then

ßj = t. + Pj, and the two systems

¿°-i
(S*) 2 XiUu = t;      j < aai,

i=0

(S#) XjoCtj.j =  Pj', j < AAI,

possess solutions.

As i'0 < a we can apply the induction hypothesis to (S*), and the desired

result is immediate.

Let us call a sequence of systems

(S*) xk%i = PiJ'      J <m'k < s

"compatible" with a system

B-l

(S) 2 */<*/; = ßfi,       j < m,
i = 0 J J

if 'o < 'j < • • • < is < ai and ßj = 2¿=u Piy lor everyy < aai, with each p, ¡

positive.

Clearly every solution of (S) determines a compatible sequence, but it is also
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clear that a compatible sequence does not necessarily determine a unique

solution of (S).

The proof of the following result is straightforward.

Theorem 3. Assume that the system (S) (as above) has a solution. Then x¡ = y¡

is a solution of (S) if and only if some compatible sequence has a solution

xik = ^k > ̂  ^ s> sucn tnat

(!) y¡k = ^kíor every k < s;

(2) y, = 0 for every i with is < i < ai;

(3) y, ay to < Pjk+j for every j < aai and every i with ik < i < ik+i for some

k <s.

The author wishes to thank the referee for his comments.
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