REDUCTION OF SYSTEMS OF LINEAR EQUATIONS IN ORDINAL VARIABLES

J. L. HICKMAN¹

ABSTRACT. In this note we are concerned with a general finite system

(S)
$$\sum_{i=0}^{n-1} x_i \alpha_{ji} = \beta_j; \quad j < m,$$

of *m* linear equations in *n* variables, where the α_{ji} and the β_j are positive ordinals, and the variables x_i range over ordinals.

In the particular case n = 1 we show that (S) can be reduced to a canonical form (S^{*}) having solutions of a relatively simple type, and we use (S^{*}) to obtain the solution-set of (S).

In the general case we show that (S) can be reduced to a finite sequence of single-variable systems, and again obtain the solution-set of (S) in terms of the solution-sets of these simpler systems.

We assume a knowledge of the elementary theory of ordinal arithmetic, such as may be found for example in [2].

Ordinals will generally be denoted by lower-case Greek letters, with finite ordinals (natural numbers) being denoted by lower-case Latin letters; the first transfinite ordinal will always be denoted by " ω ".

For $\alpha > 0$, let $\alpha = \sum_{i=0}^{n} \omega^{e_i(\alpha)} c_i(\alpha)$ be the (Cantor) normal form of α . We put $l(\alpha) = n + 1$ (the "length" of α), $e(\alpha) = e_0(\alpha)$ (the "degree" of α), $c(\alpha) = c_n(\alpha)$, and $r(\alpha) = \omega^{e_n(\alpha)}$. Of course $r(\alpha)$ is the smallest positive remainder of α , and α is a successor if and only if $r(\alpha) = 1$. Finally, if $r(\alpha) = 1$, then we put $I(\alpha) = \sum_{i=0}^{n-1} \omega^{e_i(\alpha)} c_i(\alpha)$.

We note that for all $\alpha, \beta > 0$ we have either $l(\alpha\beta) = l(\beta)$ or else $l(\alpha\beta) = l(\alpha) + l(\beta) - 1$, and that $l(\alpha\beta) = l(\beta)$ if and only if either $l(\alpha) = 1$ or $r(\beta) > 1$. These facts can easily be verified by expanding α and β into normal form and multiplying out.

We require the following results on right-divisors of ordinals; these are (in essence) set forth in [1].

RESULT 1. A nonzero limit ordinal α is a right-divisor of a nonzero (limit) ordinal β if and only if the following hold:

(a) $l(\alpha) = l(\beta);$

(b) There is some $\delta < e(r(\beta))$ such that $\delta + e_i(\alpha) = e_i(\beta)$ and $c_i(\alpha) = c_i(\beta)$ for every $i < l(\alpha)$.

In connection with the above, we note that if α is a nonzero limit ordinal and δ is any ordinal, then $\psi \alpha = \omega^{\delta} \alpha$ for any ordinal ψ with $\omega^{\delta} \leq \psi < \omega^{\delta+1}$.

Received by the editors November 19, 1974 and, in revised form, July 24, 1975.

AMS (MOS) subject classifications (1970). Primary 04A10.

¹ The work contained in this paper was done whilst the author held a Research Fellowship at the Australian National University.

Copyright © 1977, American Mathematical Society

For we have $\psi = \omega^{\delta} c + \gamma$ for some positive number c and some ordinal $\gamma < \omega^{\delta}$, and we also have $\alpha = \omega\theta$ for some positive ordinal θ . But then $\psi\alpha = ((\omega^{\delta} c + \gamma)\omega)\theta = ((\omega^{\delta} c)\omega)\theta = \omega^{\delta}\omega\theta = \omega^{\delta}\alpha$.

RESULT 2. Let α be a successor ordinal of length p + 2. Then α is a rightdivisor of a nonzero ordinal β if and only if the following hold:

(a) $l(\beta) \ge p + 2$; (b) $c(\alpha)$ divides $c_{p+1}(\beta)$; (c) $\omega^{e_{p+1}(\beta)}I(\alpha) = \sum_{i=0}^{p} \omega^{e_i(\beta)}c_i(\beta)$. In this case the equation $x\alpha = \beta$ has a unique solution. Consider the system

(S1)
$$x\alpha_j = \beta_j; \quad j < m,$$

of m linear equations in 1 variable. Obviously if (S1) has a solution, then we have

(C1)
$$\alpha_i$$
 right-divides β_i ; $j < m$

THEOREM 1. Let the system

(S1)
$$x\alpha_j = \beta_j; \quad j < m,$$

of m linear equations in 1 variable satisfy condition (C1). Then there is a system

$$(S1^*) y\alpha_j = \tau_j; j < m,$$

such that:

(1) $l(\alpha_j) = l(\tau_j)$ for every j < m;

(2) If (S1^{*}) has a solution, then it has a solution $y = \omega^{\delta}$ for some δ ;

(3) (S1) has a solution if and only if the following hold:
(I) (S1*) has a solution;

(II) For all i, j < m such that $r(\alpha_i) = r(\alpha_j) = 1$ we have

(IIa)
$$c(\alpha_i)c_{q_i}(\beta_j) = c(\alpha_j)c_{q_i}(\beta_i),$$

where $q_i = l(\alpha_i) - 1$ and $q_j = l(\alpha_j) - 1$;

(IIb)
$$\sum \{ \omega^{e_k(\beta_i)} c_k(\beta_i); l(\alpha_i) \leq k < l(\beta_i) \} \\ = \sum \{ \omega^{e_k(\beta_j)} c_k(\beta_j); l(\alpha_j) \leq k < l(\beta_j) \} \}$$

PROOF. We define the τ_j as follows. If $r(\alpha_j) > 1$, put $\tau_j = \beta_j$. Otherwise, put

$$au_j = \left(\sum_{i=0}^{p-1} \omega^{e_i(\beta_j)} c_i(\beta_j)\right) + \omega^{e_p(\beta_j)} c(\alpha_j),$$

where $p = l(\alpha_i) - 1$.

This defines $(S1^*)$: since (S1) satisfies (C1), it follows from Result 1 that $(S1^*)$ satisfies condition (1).

We now consider two cases.

(A) $r(\alpha_j) > 1$ for every j < m. From the above definition of the τ_j we see that (S1*) is simply (S1), and from this and our assumption on the $r(\alpha_j)$,

266

condition (3) follows trivially. It therefore suffices to demonstrate (2), and so we assume that (S1*) has a solution, $y = \psi$. Now there is an ordinal δ such that $\omega^{\delta} \leq \psi < \omega^{\delta+1}$; since $r(\alpha_j) > 1$ for each *j*, the remark following Result 1 tells us that $\psi \alpha_j = \omega^{\delta} \alpha_j$ for each *j*. Thus $y = \omega^{\delta}$ is also a solution.

(B) $r(\alpha_i) = 1$ for some j < m.

We commence by proving (2); thus let $y = \psi$ be a solution of (S1*). From the remark following Result 2, we see that $y = \psi$ is the only solution of (S1*), and so we must show that $\psi = \omega^{\delta}$ for some δ .

Choose $j^{\circ} < m$ such that $r(\alpha_{j^{\circ}}) = 1$. From (1) we have $l(\alpha_{j^{\circ}}) = l(\tau_{j^{\circ}}) = l(\psi_{\alpha_{j^{\circ}}})$, and so from the remark preceding Result 1 we have that $l(\psi) = 1$, that is, $\psi = \omega^{\delta} b$ for some δ and some nonzero number b. However, we also have $bc(\alpha_{j^{\circ}}) = c(\psi_{\alpha_{j^{\circ}}}) = c_p(\tau_{j^{\circ}}) = c(\alpha_{j^{\circ}})$, where $p = l(\alpha_{j^{\circ}}) - 1$. Hence b = 1, and so $\psi = \omega^{\delta}$ as desired.

It remains to demonstrate condition (3). Thus suppose that $x = \psi$ is a solution of (S1), and let δ be such that $\omega^{\delta} \leq \psi < \omega^{\delta+1}$. If $r(\alpha_j) > 1$, then as before we have $\omega^{\delta} \alpha_j = \psi \alpha_j = \beta_j = \tau_j$. If, on the other hand, $r(\alpha_j) = 1$, then we have $\omega^{\delta} \alpha_j = \omega^{\delta} I(\alpha_j) + \omega^{\delta} c(\alpha_j)$: we must show that the right side of this equation is in fact τ_j . Put $\psi = \omega^{\delta} b + \gamma$ for some nonzero number b and some $\gamma < \omega^{\delta}$; then $\beta_j = \psi \alpha_j = \omega^{\delta} I(\alpha_j) + \omega^{\delta} bc(\alpha_j) + \gamma$. From this it is easily seen that if we set $p = l(\alpha_j) - 1$, then

$$\delta = e_p(\beta_j)$$
 and $\omega^{\delta} I(\alpha_j) = \sum_{i=0}^{p-1} \omega^{e_i(\beta_j)} c_i(\beta_j).$

Hence we do indeed have $\omega^{\delta} \alpha_j = \tau_j$. Thus $y = \omega^{\delta}$ is a solution of (S1*), and so (I) holds.

With $x = \psi$ as above, we now have to demonstrate (II), and so we take i, j < m and assume that $r(\alpha_i) = r(\alpha_j) = 1$. As above we have $\beta_j = \omega^{\delta} I(\alpha_j) + \omega^{\delta} bc(\alpha_j) + \gamma$, with of course a similar expression for β_i . Thus β_i, β_j have the common remainder γ , and since $l(\gamma) = l(\beta_j) - l(\alpha_j) = l(\beta_i) - l(\alpha_i)$, this establishes (IIb). But the same expressions for β_i and β_j tell us that $c_{q_i}(\beta_i)/c(\alpha_i) = b = c_{q_i}(\beta_j)/c(\alpha_j)$, with q_i, q_j as in (IIa). This establishes (IIa).

Suppose now that (I) and (II) hold, and let $y = \sigma$ be a solution of (S1*). From our assumption that $r(\alpha_j) = 1$ for some j < m it follows that $y = \sigma$ is the only solution of (S1*), and so from (2), which has already been established, we conclude that $\sigma = \omega^{\delta}$ for some δ .

Take a particular i < m for which $r(\alpha_i) = 1$, and put $p = l(\alpha_i) - 1$, $q = l(\beta_i) - 1$. Now define a number b and an ordinal γ by $b = c_p(\beta_i)/c(\alpha_i)$ and $\gamma = \sum \{\omega^{e_k(\beta_i)}c_k(\beta_i); p < k \leq q\}$. By assumption, (S1) satisfies (C1); thus by Result 2 b is well defined and is positive. Furthermore, (II) tells us that b and γ are independent of the particular choice of i.

Now for any such *i* we have $\sigma \alpha_i = \tau_i$, whence from the definition of τ_i we see that $\delta = e(r(\tau_i)) = e_p(\beta_i)$, *p* as above. Hence $\gamma < \sigma$, and we now put $\psi = \sigma b + \gamma$. We claim that $x = \psi$ is a solution of (S1). For if $r(\alpha_j) > 1$, we have $\psi \alpha_j = \omega^{\delta} \alpha_j = \tau_j = \beta_j$, since $\omega^{\delta} \leq \psi < \omega^{\delta+1}$. On the other hand, if $r(\alpha_j) = 1$, then $\psi \alpha_j = \omega^{\delta} I(\alpha_j) + \omega^{\delta} bc(\alpha_j) + \gamma = \beta_j$. This proves our theorem.

COROLLARY. Assume that the system

J. L. HICKMAN

(S1)
$$x\alpha_i = \beta_i; \quad j < m,$$

with α_i , β_i positive ordinals, has a solution. Then:

(1) If $\dot{r}(\alpha_j) > 1$ for every j < m, then $x = \psi$ is a solution of (S1) if and only if $\omega^{\delta} \leq \psi < \omega^{\delta+1}$ for some δ such that $\delta + e(\alpha_j) = e(\beta_j)$ for every j < m. (2) If $r(\alpha_i) = 1$ for some i < m, then (S1) has the unique solution

$$x = \omega^{e_p(\beta_i)}[c_p(\beta_i)/c(\alpha_i)] + \sum \{\omega^{e_k(\beta_i)}c_k(\beta_i); p < k \leq q\},\$$

where $p = l(\alpha_i) - 1$, $q = l(\beta_i) - 1$.

THEOREM 2. The system

(S)
$$\sum_{i=0}^{n-1} x_i \alpha_{ij} = \beta_j; \quad j < m,$$

with α_{ij} , β_j positive ordinals, has a solution if and only if there are numbers $i_0 < i_1 < \cdots < i_s < n$ and ordinals $\rho_{i_k j}$, $k \leq s$, with $\beta_j = \sum_{k=0}^{s} \rho_{i_k j}$ for every j < m, such that the s + 1 systems

$$(\mathbf{S}_k) \qquad \qquad \mathbf{x}_{i_k} \alpha_{i_k j} = \rho_{i_k j}; \qquad j < m, \, k \leq s,$$

all possess solutions.

PROOF. The sufficiency of the condition is clear, since if each (S_k) has a solution $x_{i_k} = \psi_k$, then a solution of (S) is given by $x_i = \psi_k$ if $i = i_k$ for some $k \leq s$ and $x_i = 0$ otherwise.

The necessity is proved by induction on *n*, the case n = 1 being trivial. Thus take t > 1 and assume that the necessity has been proved for every n < t. Suppose that the system (S) with n = t has a solution $x_i = \gamma_i$, i < t. As each β_j is positive, we must have $\gamma_i > 0$ for some i < t. Let i° be the largest such *i*, and for each j < m define ρ_j , τ_j by $\rho_j = \gamma_i \circ \alpha_i \circ_j$ and $\tau_j = \sum_{i=0}^{i^\circ - 1} \gamma_i \alpha_{ij}$. Then $\beta_j = \tau_i + \rho_j$, and the two systems

(S*)
$$\sum_{i=0}^{i^{\circ}-1} x_i \alpha_{ij} = \tau_j; \quad j < m,$$

(S[#])
$$x_{i^{\circ}} \alpha_{i^{\circ}j} = \rho_j; \quad j < m_j$$

possess solutions.

As $i^{\circ} < t$ we can apply the induction hypothesis to (S*), and the desired result is immediate.

Let us call a sequence of systems

$$(\mathbf{S}_k) \qquad \qquad x_{i_k} \alpha_{i_k j} = \rho_{i_k j}; \qquad j < m, k \leq s$$

"compatible" with a system

(S)
$$\sum_{i=0}^{n-1} x_i \alpha_{ij} = \beta_j; \quad j < m,$$

if $i_0 < i_1 < \cdots < i_s < n$ and $\beta_j = \sum_{k=0}^s \rho_{i_k j}$ for every j < m, with each $\rho_{i_k j}$ positive.

Clearly every solution of (S) determines a compatible sequence, but it is also

268

clear that a compatible sequence does not necessarily determine a unique solution of (S).

The proof of the following result is straightforward.

THEOREM 3. Assume that the system (S) (as above) has a solution. Then $x_i = \gamma_i$ is a solution of (S) if and only if some compatible sequence has a solution $x_{i_k} = \psi_k, k \leq s$, such that

(1) $\gamma_{i_k} = \psi_k$ for every $k \leq s$; (2) $\gamma_i = 0$ for every *i* with $i_s < i < n$; (3) $\gamma_i \alpha_{ij} \omega \leq \rho_{i_{k+1}j}$ for every j < m and every *i* with $i_k < i < i_{k+1}$ for some k < s.

The author wishes to thank the referee for his comments.

References

1. S. Sherman, Some new properties of transfinite ordinals, Bull. Amer. Math. Soc. 47 (1941), 111-116. MR 2, 255.

2. W. Sierpiński, Cardinal and ordinal numbers, 2nd rev. ed., Monografie Mat., vol. 34, PWN, Warsaw, 1965. MR 33 #2549.

DEPARTMENT OF MATHEMATICS, INSTITUTE OF ADVANCED STUDIES, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, AUSTRALIA