
PROCEEDINGS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 60, October 1976

A CHARACTERIZATION OF ju-SEMIRINGS

MARGARITA RAMALHO1

Abstract. A characterization of /i-semirings is given, namely, "A semiring

@ is a /i-semiring, if and only if, for each ideal a of <s with no subideals in a

^-system iß, there exists a maximal ideal which has no subideals in Sß and

contains a."

1. Introduction. A semiring is an algebraic system @ = {a, b, c, . . . } in

which two binary associative operations, called sum ( + ) and product ( • ), are

defined so that the operation • is both left- and right-distributive over +. A

subset a of @ is called an ideal if: (i) a, b G a imply a + b E a; (ii) a G a,

s E @ imply as E a, sa E a.

A subset M of @ is called an m-system of @ if, for each pair a, b E M,

there exists x E @ such that axb E M; a subset P of @ is called ap-system of

© if, for each a E P, there exists x E P such that axa E P. These concepts,

stemming from ring theory, allow us, as in that theory, to make the study of

prime and semiprime ideals and to introduce the notion of the Baer-McCoy-

Levitzki radical [1].

Lattice semirings are instances of interesting semirings. @ is a lattice

semiring if: (i) @ is a lattice besides being a semiring; (ii) the operations A, V

satisfy x + y = x\J y, xy < x /\y. For these semirings, M. L. Noronha

Galväo gave [5] a theory for primary and primal ideals analogous to the

theory of Noether-Krull-Fuchs.

Important examples of lattice semirings are the sets @ of all ideals either of

a ring or of a semiring or of a semigroup, w-systems and /»-systems of <S are

called by A. Almeida Costa [2], respectively, ft-systems and w-systems of @.

Consequently, leaving aside @, a set Tl of ideals of a semiring @ is a

/i-system, if and only if, for each pair a, b G TI, there exists an ideal r of @

such that arb G 3D?; a set $ of ideals of @ is a w-system if and only if, for

each a G ty, there exists an ideal £ of ® such that a%a E $. Moreover, in any

semiring @ the set of all ideals which are not contained in a given prime ideal

is a jti-system and the set of all ideals which are not contained in a given

semiprime ideal is a w-system.

A p-semiring is a semiring which satisfies either the ¡tt-condition or the
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w-condition. These conditions are defined as follows (we denote by C(r) the

set of all ideals which are not subideals of j):

(¡i) For every /¿-system 3ft and every chain of ideals {ax} (X E A) such that

3ft G C(ax) (X G A) one has 3ft G C(U aA);

i<tr) For every w-system 33 and every chain of ideals {ax] (X G A) such that

33 G C(0x) (X G A) one has 33 ç C(U aA).

These assertions are equivalent, as proved in [4] and [5] where the theory of

/¿-semirings is developed. These assertions are also equivalent to the follow-

ing:

(/¿,) For every /x-system 3ft and every chain of ideals [ax] (X G A) such

that 1ÇC (ux) (X G A) there is an ideal a such that ax Q a (X G A),

3ft Ç Cia);

(tT|) For every 77-system 33 and every chain of ideals {ax} (X G A) such that

33 Ç C(aA) (X G A) there is an ideal a such that ax G a (X G A),  $ ç C(a).

Noetherian semirings, that is, those which satisfy the a.c.c. for ideals (in

particular, semirings of finite order) and non-Noetherian semirings consisting

of the real numbers x > r, where r > 1 is a real number [3], provide examples

of /¿-semirings.

In the general theory of semirings the use of certain /¿-systems and certain

w-systems (said "particulars") has permitted the establishment of results

concerning prime and semiprime ideals and consequent radical theories, but

in the theory of /¿-semirings the use of /¿-systems and 77-systems is sufficient to

establish  the Noether-Krull-Fuchs results.

Let us take in a /¿-semiring a /¿-system 3ft (w-system 33) and an ideal a with

no subideals in 3ft (in 33). From Zorn's lemma it follows that there is a

maximal ideal which has no subideals in 3ft (33) and contains a.

In this note we will prove the following characterization of /¿-semirings:

A semiring @ is a fi-semiring if and only if it satisfies the condition:

(7T0) For each ideal a and for each it-system 33 such that a has no subideals in

33, i.e., 33 G Cia), there exists a maximal ideal n which has no subideals in 33

and contains a, i.e., 33 G C(t)) G Cia).

2. Preliminary propositions. We first prove :

Proposition 1. Let 33 be a tt-system. If there is a maximal ideal t) with no

subideals in 33, i.e., 33 G C(n), then n is a semiprime ideal.

Proof. Let us assume that t) is not semiprime. Then for an ideal r one has

Ï2 C l), { ^ i). Hence t> c (ï, 0), the least ideal containing both r and n. Since

t) is maximal and has no subideals in 33, there exists m G 33 such that m Q (r,

rj). Let us consider an ideal 5 such that mjm G 33. The inclusions mam Q m2

G (j, m)(ï, m) G i) contradict the hypothesis about q. Hence r2 G n implies

Ï Qi)-

Let 33 be a w-system and a an ideal such that 33 G C(a); then a maximal

ideal rj such that 33 G C(t}) Ç C(a) is, of course, a maximal ideal satisfying

33 G C(t)). We have:
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Corollary 1. Let SB be a it-system and a an ideal such that C(a). If there is

a maximal ideal i) such that SB C C(ï)) C C(a), then t) is a semiprime ideal.

Lemma 1. Let a be a semiring satisfying condition (tt0). Given a tr-system SB

and an ideal a such that fçC (a), then there exists a minimal semiprime ideal

§ such that SB Ç C(§) Ç C(a).

Proof. Condition (tr0) implies the existence of a maximal ideal rj such that

$ Q C(c¡) C C(a). Since, by Corollary 1, t) is semiprime, the intersection of

all semiprime ideals j such that SB C C(j) ç C(a) is the minimal semiprime

ideal § we are looking for.

Now, let § be a family of ideals of a semiring @ satisfying the following

conditions: (G,) g„ g2 G § imply (g„ g2) G § ; (G2) g £ g, G § imply g G §

(§ is an ideal of the lattice <3 of all ideals of @). It is easy to verify that the

existence of a maximal element g0 G ß implies g0 = U ga (ga G §). It is the

same to say that g0 is maximal in § or to say that g0 is maximal such that

© - S - C(flo).

Lemma 2. Let @ be a semiring satisfying condition (Tt0) and let {Sx} (X E A)

be a chain of semiprime ideals; then U ëx = §x for some \0 E A.

Proof. Let § be the family consisting of all subideals of all §x. § satisfies

(G,) and (G2). We shall verify that the set of all ideals not in §, SB = @ - §,

is a 77-system. Given j G SB we shall prove that r.j2r. G SB. If this were not so,

one would have j2j2 G §, hence j2ï2 ç §A, for some X G A, which would

imply % C §A, i.e., i E §, which is absurd. The fact that @ satisfies condition

(tt0) and the inclusion SB Ç C (§x), together, imply the existence of a maximal

ideal n such that SB C C(n). Thus we conclude the existence of a maximal

ideal in §, which is necessarily a êXo such that U §x = §A„ (A G A).

3. Main proposition. We have seen above, in the introduction, that the

necessity of condition (tt0) for S to be a u-semiring is a consequence of

Zorn's lemma. Conversely, let @ be a semiring that satisfies condition (7t0), let

SB be a 77-system, and let {ax} (X E A) be a chain of ideals of @ such that

SB C C(ax) (\ E A). By Lemma 1, we can assign to each aA the minimal

semiprime ideal §A such that SB Ç C(êA) C C(ax). From aa Q qt one con-

cludes SB C C(§T) C C(aT) C C(aa), hence by the minimality of §a, §0 C §T.

Then, by Lemma 2 and by the fact that ax ç §x, (J ax ç (J §x = êx ; conse-

quently, SB Ç C (§Xo) C C ( U ûx)- This completes the proof of the main prop-

osition.
The author wishes to thank the referee for his suggestions.
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