A CHARACTERIZATION OF μ-SEMIRINGS

MARGARITA RAMALHO¹

ABSTRACT. A characterization of μ -semirings is given, namely, "A semiring $\mathfrak S$ is a μ -semiring, if and only if, for each ideal $\mathfrak a$ of $\mathfrak S$ with no subideals in a π -system $\mathfrak B$, there exists a maximal ideal which has no subideals in $\mathfrak B$ and contains $\mathfrak a$."

1. **Introduction**. A *semiring* is an algebraic system $\mathfrak{S} = \{a, b, c, \dots\}$ in which two binary associative operations, called sum (+) and product (\cdot) , are defined so that the operation \cdot is both left- and right-distributive over +. A subset \mathfrak{a} of \mathfrak{S} is called an ideal if: (i) $a, b \in \mathfrak{a}$ imply $a + b \in \mathfrak{a}$; (ii) $a \in \mathfrak{a}$, $s \in \mathfrak{S}$ imply $as \in \mathfrak{a}$, $sa \in \mathfrak{a}$.

A subset M of \mathfrak{S} is called an m-system of \mathfrak{S} if, for each pair $a, b \in M$, there exists $x \in \mathfrak{S}$ such that $axb \in M$; a subset P of \mathfrak{S} is called a p-system of \mathfrak{S} if, for each $a \in P$, there exists $x \in P$ such that $axa \in P$. These concepts, stemming from ring theory, allow us, as in that theory, to make the study of prime and semiprime ideals and to introduce the notion of the Baer-McCoy-Levitzki radical [1].

Lattice semirings are instances of interesting semirings. \mathfrak{S} is a *lattice semiring* if: (i) \mathfrak{S} is a lattice besides being a semiring; (ii) the operations \wedge , \vee satisfy $x + y = x \vee y$, $xy \leq x \wedge y$. For these semirings, M. L. Noronha Galvão gave [5] a theory for primary and primal ideals analogous to the theory of Noether-Krull-Fuchs.

Important examples of lattice semirings are the sets $\overline{\otimes}$ of all ideals either of a ring or of a semiring or of a semigroup. m-systems and p-systems of $\overline{\otimes}$ are called by A. Almeida Costa [2], respectively, μ -systems and π -systems of $\overline{\otimes}$. Consequently, leaving aside $\overline{\otimes}$, a set $\mathfrak M$ of ideals of a semiring $\overline{\otimes}$ is a μ -system, if and only if, for each pair α , $\beta \in \mathfrak M$, there exists an ideal $\mathfrak x$ of $\overline{\otimes}$ such that $\alpha \mathfrak x \beta \in \mathfrak M$; a set $\mathfrak B$ of ideals of $\overline{\otimes}$ is a π -system if and only if, for each $\alpha \in \mathfrak B$, there exists an ideal $\mathfrak x$ of $\overline{\otimes}$ such that $\alpha \mathfrak x \alpha \in \mathfrak A$. Moreover, in any semiring $\overline{\otimes}$ the set of all ideals which are not contained in a given prime ideal is a μ -system and the set of all ideals which are not contained in a given semiprime ideal is a π -system.

A μ -semiring is a semiring which satisfies either the μ -condition or the

Received by the editors May 25, 1975 and, in revised form, September 18, 1975 and February 2, 1976.

AMS (MOS) subject classifications (1970). Primary 16A78.

¹Research supported by the Instituto de Alta Cultura, Lisbon (Projecto de Investigação LM/4).

 π -condition. These conditions are defined as follows (we denote by $C(\mathfrak{x})$ the set of all ideals which are not subideals of \mathfrak{x}):

- (μ) For every μ -system \mathfrak{M} and every chain of ideals $\{\alpha_{\lambda}\}$ ($\lambda \in \Lambda$) such that $\mathfrak{M} \subseteq C(\alpha_{\lambda})$ ($\lambda \in \Lambda$) one has $\mathfrak{M} \subseteq C(\cup \alpha_{\lambda})$;
- (π) For every π -system $\mathfrak P$ and every chain of ideals $\{\mathfrak a_{\lambda}\}$ $(\lambda \in \Lambda)$ such that $\mathfrak P \subseteq C(\mathfrak a_{\lambda})$ $(\lambda \in \Lambda)$ one has $\mathfrak P \subseteq C(\cup \mathfrak a_{\lambda})$.

These assertions are equivalent, as proved in [4] and [5] where the theory of μ -semirings is developed. These assertions are also equivalent to the following:

- (μ_1) For every μ -system \mathfrak{M} and every chain of ideals $\{\alpha_{\lambda}\}$ $(\lambda \in \Lambda)$ such that $\mathfrak{M} \subseteq C(\alpha_{\lambda})$ $(\lambda \in \Lambda)$ there is an ideal α such that $\alpha_{\lambda} \subseteq \alpha$ $(\lambda \in \Lambda)$, $\mathfrak{M} \subset C(\alpha)$;
- (π_1) For every π -system \mathfrak{P} and every chain of ideals $\{\alpha_{\lambda}\}$ $(\lambda \in \Lambda)$ such that $\mathfrak{P} \subseteq C(\alpha_{\lambda})$ $(\lambda \in \Lambda)$ there is an ideal α such that $\alpha_{\lambda} \subseteq \alpha$ $(\lambda \in \Lambda)$, $\mathfrak{P} \subseteq C(\alpha)$.

Noetherian semirings, that is, those which satisfy the a.c.c. for ideals (in particular, semirings of finite order) and non-Noetherian semirings consisting of the real numbers $x \ge r$, where r > 1 is a real number [3], provide examples of μ -semirings.

In the general theory of semirings the use of certain μ -systems and certain π -systems (said "particulars") has permitted the establishment of results concerning prime and semiprime ideals and consequent radical theories, but in the theory of μ -semirings the use of μ -systems and π -systems is sufficient to establish the Noether-Krull-Fuchs results.

Let us take in a μ -semiring a μ -system \mathfrak{M} (π -system \mathfrak{P}) and an ideal α with no subideals in \mathfrak{M} (in \mathfrak{P}). From Zorn's lemma it follows that there is a maximal ideal which has no subideals in \mathfrak{M} (\mathfrak{P}) and contains α .

In this note we will prove the following characterization of μ -semirings:

A semiring \mathfrak{S} is a μ -semiring if and only if it satisfies the condition:

 (π_0) For each ideal α and for each π -system $\mathfrak B$ such that α has no subideals in $\mathfrak B$, i.e., $\mathfrak B \subseteq C(\alpha)$, there exists a maximal ideal $\mathfrak y$ which has no subideals in $\mathfrak B$ and contains α , i.e., $\mathfrak B \subseteq C(\mathfrak y) \subseteq C(\alpha)$.

2. Preliminary propositions. We first prove:

PROPOSITION 1. Let \mathfrak{P} be a π -system. If there is a maximal ideal \mathfrak{P} with no subideals in \mathfrak{P} , i.e., $\mathfrak{P} \subseteq C(\mathfrak{P})$, then \mathfrak{P} is a semiprime ideal.

PROOF. Let us assume that η is not semiprime. Then for an ideal \mathfrak{x} one has $\mathfrak{x}^2 \subseteq \mathfrak{y}$, $\mathfrak{x} \nsubseteq \mathfrak{y}$. Hence $\mathfrak{y} \subset (\mathfrak{x}, \mathfrak{y})$, the least ideal containing both \mathfrak{x} and \mathfrak{y} . Since \mathfrak{y} is maximal and has no subideals in \mathfrak{P} , there exists $\mathfrak{m} \in \mathfrak{P}$ such that $\mathfrak{m} \subseteq (\mathfrak{x}, \mathfrak{y})$. Let us consider an ideal \mathfrak{z} such that $\mathfrak{m}\mathfrak{z}\mathfrak{m} \in \mathfrak{P}$. The inclusions $\mathfrak{m}\mathfrak{z}\mathfrak{m} \subseteq \mathfrak{m}^2 \subseteq (\mathfrak{x}, \mathfrak{m})(\mathfrak{x}, \mathfrak{m}) \subseteq \mathfrak{y}$ contradict the hypothesis about \mathfrak{y} . Hence $\mathfrak{x}^2 \subseteq \mathfrak{y}$ implies $\mathfrak{x} \subseteq \mathfrak{y}$.

Let \mathfrak{P} be a π -system and \mathfrak{q} an ideal such that $\mathfrak{P} \subseteq C(\mathfrak{q})$; then a maximal ideal \mathfrak{p} such that $\mathfrak{P} \subseteq C(\mathfrak{p}) \subseteq C(\mathfrak{q})$ is, of course, a maximal ideal satisfying $\mathfrak{P} \subseteq C(\mathfrak{p})$. We have:

COROLLARY 1. Let \mathfrak{P} be a π -system and \mathfrak{a} an ideal such that $C(\mathfrak{a})$. If there is a maximal ideal \mathfrak{p} such that $\mathfrak{P} \subseteq C(\mathfrak{p}) \subseteq C(\mathfrak{a})$, then \mathfrak{p} is a semiprime ideal.

LEMMA 1. Let α be a semiring satisfying condition (π_0) . Given a π -system $\mathfrak P$ and an ideal α such that $\mathfrak P \subseteq C(\alpha)$, then there exists a minimal semiprime ideal $\mathfrak S$ such that $\mathfrak P \subseteq C(\mathfrak S) \subseteq C(\alpha)$.

PROOF. Condition (π_0) implies the existence of a maximal ideal \mathfrak{y} such that $\mathfrak{P} \subseteq C(\mathfrak{y}) \subseteq C(\mathfrak{a})$. Since, by Corollary 1, \mathfrak{y} is semiprime, the intersection of all semiprime ideals \mathfrak{x} such that $\mathfrak{P} \subseteq C(\mathfrak{x}) \subseteq C(\mathfrak{a})$ is the minimal semiprime ideal \mathfrak{S} we are looking for.

Now, let \mathcal{G} be a family of ideals of a semiring \mathfrak{S} satisfying the following conditions: $(G_1) \ g_1, \ g_2 \in \mathcal{G}$ imply $(g_1, \ g_2) \in \mathcal{G}$; $(G_2) \ g \subseteq g_1 \in \mathcal{G}$ imply $g \in \mathcal{G}$ (\mathcal{G} is an ideal of the lattice \mathfrak{S} of all ideals of \mathfrak{S}). It is easy to verify that the existence of a maximal element $g_0 \in \mathcal{G}$ implies $g_0 = \bigcup g_\alpha \ (g_\alpha \in \mathcal{G})$. It is the same to say that g_0 is maximal in \mathcal{G} or to say that g_0 is maximal such that $\mathfrak{S} - \mathcal{G} = C(g_0)$.

LEMMA 2. Let \mathfrak{S} be a semiring satisfying condition (π_0) and let $\{\mathfrak{S}_{\lambda}\}$ $(\lambda \in \Lambda)$ be a chain of semiprime ideals; then $\bigcup \mathfrak{S}_{\lambda} = \mathfrak{S}_{\lambda_0}$ for some $\lambda_0 \in \Lambda$.

PROOF. Let \mathcal{G} be the family consisting of all subideals of all \hat{s}_{λ} . \mathcal{G} satisfies (G_1) and (G_2) . We shall verify that the set of all ideals not in \mathcal{G} , $\mathfrak{P} = \overline{\mathfrak{S}} - \mathcal{G}$, is a π -system. Given $\mathfrak{x} \in \mathfrak{P}$ we shall prove that $\mathfrak{x}\mathfrak{x}^2\mathfrak{x} \in \mathfrak{P}$. If this were not so, one would have $\mathfrak{x}^2\mathfrak{x}^2 \in \mathcal{G}$, hence $\mathfrak{x}^2\mathfrak{x}^2 \subseteq \hat{s}_{\lambda}$, for some $\lambda \in \Lambda$, which would imply $\mathfrak{x} \subseteq \hat{s}_{\lambda}$, i.e., $\mathfrak{x} \in \mathcal{G}$, which is absurd. The fact that \mathfrak{S} satisfies condition (π_0) and the inclusion $\mathfrak{P} \subseteq C(\hat{s}_{\lambda})$, together, imply the existence of a maximal ideal \mathfrak{p} such that $\mathfrak{P} \subseteq C(\mathfrak{p})$. Thus we conclude the existence of a maximal ideal in \mathcal{G} , which is necessarily a \hat{s}_{λ_0} such that $\bigcup \hat{s}_{\lambda} = \hat{s}_{\lambda_0}$ ($\lambda \in \Lambda$).

3. Main proposition. We have seen above, in the introduction, that the necessity of condition (π_0) for $\mathfrak S$ to be a μ -semiring is a consequence of Zorn's lemma. Conversely, let $\mathfrak S$ be a semiring that satisfies condition (π_0) , let $\mathfrak B$ be a π -system, and let $\{\alpha_\lambda\}$ $(\lambda \in \Lambda)$ be a chain of ideals of $\mathfrak S$ such that $\mathfrak B \subseteq C(\alpha_\lambda)$ $(\lambda \in \Lambda)$. By Lemma 1, we can assign to each α_λ the minimal semiprime ideal $\mathfrak S_\lambda$ such that $\mathfrak B \subseteq C(\mathfrak S_\lambda) \subseteq C(\alpha_\lambda)$. From $\alpha_\sigma \subseteq \alpha_\tau$ one concludes $\mathfrak B \subseteq C(\mathfrak S_\tau) \subseteq C(\alpha_\tau) \subseteq C(\alpha_\sigma)$, hence by the minimality of $\mathfrak S_\sigma$, $\mathfrak S_\sigma \subseteq \mathfrak S_\tau$. Then, by Lemma 2 and by the fact that $\alpha_\lambda \subseteq \mathfrak S_\lambda$, $\bigcup \alpha_\lambda \subseteq \bigcup \mathfrak S_\lambda = \mathfrak S_{\lambda_0}$; consequently, $\mathfrak B \subseteq C(\mathfrak S_{\lambda_0}) \subseteq C(\bigcup \alpha_\lambda)$. This completes the proof of the main proposition.

The author wishes to thank the referee for his suggestions.

BIBLIOGRAPHY

1. A. Almeida Costa, Sur la théorie générale des demi-anneaux. I, Séminaire P. Dubreil, M. L. Dubreil-Jacotin et C. Pisot, 14ième année: 1960/61, fasc. 2, exposé 24, Sécretariat math., Paris, 1963.

- 2. ____, μ-systèmes et π-systèmes d'idéaux, Univ. Lisboa Revista Fac. Ci. 7 (1959), 235-243.
- 3. ______, Sur les μ-demi-anneaux, Math. Z. 108 (1968), 10-14. MR 38 #5857.
 4. _____, Sur la théorie gérérale des demi-anneaux, Publ. Math. Debrecen 10 (1963), 14-29. MR 29 #5868.
- 5. M. L. Noronha Galvão, On a Noether-Krull theory for semi-rings, Univ. Lisboa Revista Fac. Ci. A (2) 8 (1960/61), 175-256. (Portuguese) MR 28 #5096.

Instituto de Alta Cultura, Lisbon, Portugal

Current address: Rua Pais Ramos, n°. 26, 3°. E., Amadora, Portugal