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Abstract. This paper gives criteria for a vector-valued Jordan decomposi-

tion theorem to hold. In particular, suppose L is an order complete vector

lattice and ft is a Boolean algebra. Then an additive set function ¡i: 6? -» L

can be expressed as the difference of two positive additive measures if and

only if n(3,) is order bounded. A sufficient condition for a countably additive

set function with values in c0(r), for any set T, to be decomposed into

difference of countably additive set functions is given; namely, the domain

being the power set of some set.

We are concerned here with vector-valued additive set functions defined on

some sort of Boolean algebra with vector-values in a (generally order

complete) vector lattice. The purpose of this note is to expose conditions that

insure such measures can be written as a difference of positive measures, i.e.,

conditions for a vector-valued Jordan decomposition theorem to hold. For this

reason, a measure that can be expressed as the difference of two positive

additive measures will be called "decomposable".

The decomposability of vector measures per se was first studied by C. E.

Rickart in a 1943 Duke Mathematical Journal article where he established a

Lebesgue decomposition theorem for the class of "strongly bounded" additive

measures. This result was later re-established (although it was not realized at

the time) by J. J. Uhl, Jr. [10] who also presented a Yosida-Hewitt decompo-

sition theorem for "strongly bounded" measures. In [3], Diestel and Faires

exhibited several decomposition theorems of the Jordan type, however, they

did not give necessary and sufficient conditions for the decomposability of a

vector measure. Our first result supplies these conditions, although, as is

indicated, only one part of the proof is new.

So, let & be a Boolean algebra, S& the vector lattice of simple functions over

& endowed with the uniform norm, and L a vector lattice. If p: & —> L is an

additive set function, then the operator T : Sa^> L associated with p is

defined by

T( 2 a,.c   ) = 2 a,Ka,)
\/=i /       <=l
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where a,, ..., cxn are scalars and ax, ..., an are disjoint elements of &.

Furthermore, if we let ü& denote the Stone space of &, then by Stone's

representation theorem we can identify & with the field of clopen subsets of

Í2a. We assume this identification has been made throughout the following.

Lemma. Let L be an order complete vector lattice and u: (£ —» L an additive set

function. If ¡x(&) is order bounded then the operator T, associated with ¡i, maps

order bounded sets in Ss into order bounded sets in L.

Proof. Since n is order bounded there is a z G L+ such that jtt(a)

G (-z,z) for all a G â. Let U denote the unit ball of S& and note that any

order interval in S& is contained in an appropriate scalar multiple of U. Thus

to establish the order boundedness of T, it suffices to consider only simple

functions of norm < 1. Let 2"=i ct¡ca G U with a¡ A a = 0 for i =£ j, then

supja,! < 1 so, without loss of generality, we can assume the a('s have the

following order: -1 < a, < a2 < • • • < a„ < 1. Letting ßx = ax, ß2 = a2

-a,, ...,ßn = a„- a„_, we have

H,?, a,cv = ,?ia,,x(a,)

- A^.Va,) + /32ri(.V«,) + ■ ■ • + ßt-ll^Jifi) + ßnVbn)-

If we now let bk = \J"=kai for k = 1, ..., n, then

tJÎ a¡Ca) =   i  ßkKbk).
\í=l / K=l

Since sup-|a,| < 1, it is easily seen that 2¡t=i \ßk\ < 2 so that

-2z <   2  ßkÄbk) < 2z,
k=\

hence -2z < 7¿(2,"=i «,^a.) < 2z and T is order bounded.

Theorem 1. Suppose L is an order complete vector lattice and & is a Boolean

algebra. Then an additive set function ¡i: &^> L is decomposable if and only if

HÍ&) is order bounded.

Proof. Suppose ¡u is decomposable into ¡ti = ju,+ - /x~. Then since |ju(a)|

< /i+(l) + ju~(l) for every a G â, we clearly have

tffi) C <-[/x+(D + m"(1)Um+(D + M"(l)]>

so that jit(éE) is order bounded.

On the other hand, if ni&) is order bounded, by the Lemma T : S& -» L is

order bounded. As is well known (see e.g. [8]), T is then decomposable into

7' = F+ - T~~ where T+, T~ are positive linear operators. The proof is now

complete upon the realization that by defining
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p+(a) = T+(ca)   and    a" (a) = T~(ca)

for each a E &, we have the desired decomposition of u.

The interest in this theorem comes somewhat less from its own statement

than from the several corollaries which follow. It is worth noting at this time

that we immediately get that if an additive set function p takes values in any

C(A")-space for K Stonian, then by the Dedekind complete nature of Stonian

spaces, we have p decomposable into the difference of positive measures.

Somewhat less obvious is the following corollary due originally to A. Grothen-

dieck and first exposed by Diestel and Faires [3]:

Corollary. Let X be an abstract L-space and (Í2,2 ) a measure space. Then

an additive map u: 2 —► X is decomposable if and only if p is of bounded

variation.

Remarking that a Banach lattice containing no closed sublattice order

isomorphic to c0 has the monotone convergence property, Theorem 1 yields

the

Corollary. Let X be a Banach lattice containing no copy of c0 and F be an

X-valued measure defined on a sigma-algebra. Then F is decomposable if it is of

finite variation.

If we now look at arbitrary Banach lattice-valued measures of bounded

variation, decomposability can still be obtained by considering a more

restrictive class of set functions. In fact, a relatively straightforward calcula-

tion gives the following

Proposition. Let ñ be a set, 2 a sigma-algebra of subsets of ñ, and L a

Banach lattice. Then a countably additive set function F: 2 —> L possessing

bounded variation \F\ with dF/d\F\ existing (in the sense of Bochner) is decom-

posable.

Remark. By using methods similar to those of J. J. Uhl, Jr. [9], one can

obtain: If L is a Banach lattice, ?F a field of sets, and F: ÇF-» L is a finitely

additive measure possessing finite variation such that F is approximately

differentiable with respect to \F\, then Fis decomposable.

The next theorem shows when a countably additive set function with values

in c0(r), for any set T, can be decomposed retaining countable additivity.

More specifically,

Theorem 2. Let Q be any set, denote by 2 the power set of Ü, and let

u: 2 —» c0(r) be countably additive. Then it is decomposable into ¡x = p+ — p~,

where p+, p~ are both positive and countably additive.

Proof. Let S = {2,"=i a¡cA-- ai> • • • 'an are scalars and Ax, ..., An is a

sequence of pairwise disjoint members of 2 } and define T : S ^> c0(T) by

TAs) = 2/Li <*ip{A,) where s = 2,"=i a¡cA¡ e $• Note T^ is continuous and

linear on S viewed as a subspace of lx(ü). By the density of S in lx(ü), T can
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be extended to a continuous operator T: /^(ß) -» c0(T) where T is given by

T(f) = fc¡fd(i for each/ G /^(ß). As is well known [4], if À is any localizable

measure on a sigma-field S, and F: S —> X is a bounded (finitely additive)

vector measure vanishing on A-null sets, F is countably additive if and only if

the operator TF: /^(ß) -* X given by TFis) = f sdF is weak*-weak contin-

uous. Thus u's countable additivity yields Fis weak*-weak continuous and so

its adjoint T* : lx(T) —> lx(Q) is a weakly compact linear operator. However,

F*'s range is contained in a Schur space so that T , and therefore T, is

actually a compact operator. Hence, the image A of the unit ball of /^(ß),

under the mapping T, is relatively compact. In particular, ju(2 ) G A is

relatively compact in c0(r). But in c0(T), relative compactness and order

boundedness coincide, so by Theorem 1, /x is decomposable into ju = ¡x+

- ¡j.~ , where ¡i+, p~ are positive finitely additive set functions. Clearly both

¡x+ and jtx   are strongly additive since c0(T) is weakly compactly generated.

Finally, it remains to show that u.+ and p~ can be taken to be countably

additive. By the Uhl generalization of the Yosida-Hewitt decomposition

theorem [10], there is a continuous linear norm one projection P of the

strongly additive set functions onto the countably additive set functions. By a

careful look at the construction involved in this theorem, one sees that the

projection takes positive set functions to positive set functions, and so the

desired decomposition of u. is complete upon the calculation ¡u = P¡x

= P(n+ — ¡i~) = Pjti+ - Pfi~ where Pfx+ and Pu- are both positive and

countably additive.

At this point it is worthwhile to return to Theorem 1 and note that

decomposability of ¡x implying order boundedness of its range was not

dependent on the order completeness of L. Thus, if ¡i is a decomposable

additive set function from 2n into any vector lattice L, then /t(2ß) is order

bounded. In particular, if ¡i: 2 -» c0 is decomposable, then its range must be

relatively compact in c0. Thus, as the following example demonstrates,

Theorem 2 is highly dependent on the underlying sigma-algebra being all

subsets of a given set.

Example. Let ß = [0,277], 2 be the collection of Lebesgue measurable

subsets of ß, and define ¡x: 2 —> c0 by

Then by the Riemann-Lebesgue lemma, ju is well defined and can be quickly

shown to be countably additive and of finite variation. However, ¡i is not

decomposable as it is easily seen to have nonrelatively compact range. It

should be noted that /i(2) being nonrelatively compact also yields that ju. is not

Bochner differentiable with respect to Lebesgue measure [2].

After considering this example, one might suspect that the concepts of

decomposability and differentiability of a measure with values in c0 are closely
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related. Our final example, due to D. R. Lewis [7], indicates why this suspicion

is ill-founded.

Example. Let (S2,2, ix) be any finite nonnegative measure space with p

nonatomic and consider each element x of c0 as a doubly indexed sequence

x = (xnj) where n > 1 and 2" < / < 2"+1. Then the nonatomic nature of p

allows us to generate a sequence of measurable sets (Ani) such that p(Ani)

= 2~"p(Q,), where An ¡ is the disjoint union of An+X 2i and An+X2i+X. If we now

define F: 2 -> c0 by

F(A) = (p(A n AJ),

then F is clearly /¿-continuous and possesses finite variation. Furthermore, in

[7] Lewis has shown that the range of F is relatively compact, convex, and that

F has no Bochner derivative with respect to p. Thus, we have a decomposable,

nondifferentiable vector measure of finite variation with values in c0.
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