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AN EXAMPLE OF A DOUBLY CONNECTED DOMAIN

WHICH ADMITS A QUADRATURE IDENTITY

A. L. LEVIN

Abstract. In this paper we construct a doubly connected domain D3Ü

such that ffD f(z) do = Af(Q) + Bf'(0) for any analytic and area integrable

in D function /, which has a single-valued integral in D.

1. Introduction. We first introduce the notation (see [ 1 ]). Let D be a bounded

plane domain. By La(D) we denote the set of single-valued analytic functions

in D which are integrable in D with respect to the areal measure do, and by

Lxa s(D) the subset of La(D) consisting of functions with single-valued integral.

We say that D admits a quadrature identity (q.i.) relative to La(D) (or L\ S(D))

if there exist a point z0 G D and complex numbers A, B such that

(*) fDfdo = Af'iz0) + BfizQ)

for every/ G Lla(D) (or/ G 7.^(7))).

For a discussion of the background of this problem, see [1]. We note only

that for a one point q.i., namely

(**) fDfdo = Af(z0)

there is no difference between Lxa and Lxas. It can be shown [ 1, Theorem 7]

that the validity of (**) for every /G L]asiD) implies that D is simply

connected and, hence, a disc centered at z0.

In the present paper we show that the validity of (*) for all/in Lxas(D) does

not imply that D is a simply connected domain. We prove the following

Theorem. There exists a bounded doubly connected domain D which admits a

quadrature identity (*)for all f G La S(D).

Remarks. 1. It turns out that the validity of (*) for all / G Lxa(D) does

imply that D is simply connected. This fact was proved by D. Aharonov and

H. Shapiro [1, Theorem 4]. Such a domain D can be found explicitly.

2. Our theorem is closely related to a certain minimal-area problem

considered in [2]. In fact, our example shows that the method in [2], as it

stands now, is not sufficiently strong to conclude that a certain domain D is
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simply connected. Such a conclusion would lead to the complete solution of

the above-mentioned extremal problem.

3. A recent result (unpublished) of B. Gustafsson shows that if we consider

a q.i. of higher order, then for every positive integer n there exists a domain of

connectivity n which admits a q.i. of some (unknown) order.

2. We start with some preliminary results.

Lemma 1. Let D be a bounded doubly connected domain. Let its boundary be

C = r¡ U J^, where T, and T2 are nonintersecting rectifiable Jordan curves, Y2

surrounding Tx. Then the rational functions from LaAD) ore dense in La S(.D) in

the Û(D)-metric.

Proof. Let { be some fixed point in the interior of T,. It is known1 that

under our topological requirement on oD it is possible to approximate (in the

L (£>)-metric) every function/ G Lla(D) by rational functions with poles at f

and at infinity. Let /?„(z) be a sequence of such rational functions for a given

/, i.e. SD \f(z) - B-Az)\ i/o -» 0 as « -> co. It is known (see [4, p. 109]) that this

condition implies the uniform convergence of /?„(z) to/(z) on any closed set

interior to D. Consequently, we have for some fixed path yCi which

surrounds Tx :

f R„(z)dz   =   f (Rn(z) - f(z))dz
Jy Jy

<c max\f(z) - Rn(z)\-+0.'   y

This  means  that  the  residue  an  of  Ä„(z)  at  point  f  tends  to  zero.   Let

RAZ) = R„(z) - otn/(z - O; then £„(z) G L^JD) and we have

f   \f- R„\do < (   |/- R Ida + \a\ f  ,-
JD " JD "' '   "' JD \z

da

l\
0.

Lemma 2. Let D be as in Lemma 1 and contain zero, and let f(z) be continuous

in D and analytic in D except for a double pole at z = 0, and such that

m = {;
z öai r¡

. z + À       on T2     (X being some complex number ).

Then D admits a q.i. (*) for every h E La AD).

Proof. Set f(z) = a/z2 + b/z + T(z) where T(z) is analytic in D. Let h(z)

be continuous in D and ai(z) G ¿^(D). This means that fT hdz = fr hdz

= 0. Hence, using Green's formula,

1 See, for instance, [3, p. 114], where this result is formulated (in much stronger form) for the

L (D)-metric. The proof is based on the fact that any function in L\(G) (G is a simply connected

bounded Jordan domain) can be approximated in the L2(ö)-metric by polynomials. But this last

assertion is also true for the case of i} (Z)^approximation (see, for instance, [4, p. 45]). So the proof

in [3] holds for our case as well.
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¡Dhda = Tifczh{z)dz = JiSvJ{z)h{z)dz + Iifr2 [/(z) " X]h{z)dz

= ~fcfiz)hiz)dz = i/c(^ + \ + T(z)Y(z)dz - Ah'(0) + Bh(0)

(where A = ira, B = trb). Thus, the q.i. holds for h E Las(D) provided h is

continuous in D. Let now h(z) be any function in La S(D). In view of Lemma

1, we can find a sequence R„(z) such that/fl hdo = lim,,^^ fD Rniz)do, each

R„iz) having a single-valued integral in D.

Consequently we have

f  Hz)da =  Lim  f  Rniz)do =  lim iAR'niO) + BRniO))
JD n->oo JD n->oo

= Ah'iO) + BhiO).

Lemma 3. Let A be a closed annulus 1 < \z\ < R and let \ < a < 7?. F/te«

/or every real X there exist a function giz) which is analytic in A, and another

function f(z) which is analytic in A except for a double pole at z = a, such that

{( \ = if^ °n 'Z' = l'

'\giz) + X       on\z\ = R.

Proof. Let /(z) = a/(z - a) + b/iz - a) + F(z) where a, b are real and

Tiz) is analytic in A. We then have the expansions for /:

k        ,   oo   / _ \ k

(1)

(2)

*»-5ïMiHï(ï)
00 00

+ 2rt:' + 2 T_kz~k + T0   on |z| = 1,

/»-¿f(.+o(;)*+*f(;)'
00 00

+ 2 Tkzk + 2 T_kz~k + TQ   on |z| = 7?.
l l

For giz) which is analytic in A we have

_ 00 00

(3) giz) = 2, gkz~k + 2 g-kzk + g0   on|z| = l,

(4) W) + A = 2 gkRlkz~k + 2 g-kR~lkzk + g0 + A    on|z|=7v.

Provided/(z) = g(z) on \z\ = 1, we obtain
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a      b

(5)
a       "

(k+i)-k%2-^x + Tk=g_k,    T_k=gk       (¿=1,2,...).
a a

Provided/(z) = g(z) + À on \z\ ■■= R, we obtain

(6)

From (5) and (6) we obtain

T0 = g0 + X,   (k- l)aak-2 + bak~] + T_k = gkR2k,    Tk = R~2kg_k

(k= 1,2,...).

(7) A = b/a- a/a2,

a(k- l)ak-2 + bak-]

êk      8k 2k_

8
L,2k

8-k = 8-k-(j^(k+l)--T^)-2^-       (k = 1,2,...),
\<x a      / K     — 1

^0 = £o + A>

a(Ac - l)cxk~¿ + bak-2 _,_ ,.k-\

(* = 1,2,...).

Using (8), (9) we obtain after a simple manipulation:

f(z) ^ + A+ro + Ài («A)* - («A)'*
(z - a)2     z - a       ° *-1 Ä2* - 1

(10)
+ ^  g   kia/z)k + ia/zyk

a2 *=i /?2*- 1

(az)¿ - /^(az)-*

(10
+ _a   "   k(az)k + R2k(az)-k

a2 k=\ R2k - 1

We note, that for the present T0 may be chosen arbitrarily; a and b may also

be arbitrary (and real) but must satisfy (7). Since 1 < a < R, g(z) and the

regular part of f(z) are analytic in the closed annulus A and the above

computation (5), (6) shows, that/and g satisfy the requirement of Lemma 3.

Lemma 4. The function g(z) which is defined by (11) is univalent in the closed

annulus A, provided a = R ' , a — Xa (X # 0), and provided R is sufficiently

large.
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Proof. Provided À = a/a2, we obtain from (11): g(z) = T0 - X + A<f>(z),

where we set

■,2k,

(12)       m ■ g M' -/>'>" + g tM- + «-M"
1 7?2* - 1 1 7?2* - 1

Provided À ^ 0, it suffices to prove univalence of <p(z). We obtain from (12):

_ + i(«zr-^(azr + ife(^ + P^(az)^
(13)   VW      7?2 - 1      f 7?2/c - 1 2 P2* - 1

2az , .
= ^—,+</>,(;)•

For any pair of points zx, z2 in A we have

2«
¿>(z2) - tfz,)  «   P «/»'(^  = T2-^t(z2 - zl) +  i'2 *í W

•'zl P    -  1 •'^l
dz.

We can choose the path of integration from z, to z2 in such a way that its

length will not exceed 3|z, - z2|. Thus, in order to prove univalence of ¿»(z) we

have to show that

(14) max|<¡,',(z)| <2a/3(P2- 1).

From (13) we obtain

r   oo       l      \k-\   t    n2k\      \—k—\ oo I      l^'_1   ,    r>2£ I      l-^-1^

(15) "! *    - '

<4„|^M""I + S2i|«irt"12

fc=2 P2/c

4a °°    ,     - k~1

P2  2

a:

\az\    2        azP^

If we choose now a = R '4, we obtain from (15):

|*i(z)| < 4P-5/4 2 k2iR-V4)"-] + 4P-3/4 2 k2iR-^)k~X < CR-"2
2 2

for sufficiently large 7?.

The validity of (14) for a = P3'4 is now clear, which proves the lemma.

2 This step is correct provided R > 21'4.
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3. We now proceed to prove our theorem. We choose some real X (X ¥= 0)

and some sufficiently large R (for which Lemma 4 is valid). Set a = R , a

= a2 ■ X, b = 2Xa. The function g(z) is then defined by (11) up to the additive

constant 7¿, chosen such that g(R ' ) = 0. In view of Lemma 4, w = g(z) is

analytic and univalent in the closed annulus A = {l<|z|<Ä} and maps its

interior onto the doubly connected domain D, which contains zero. Set

Kw) = f(g~l(w)), where/is defined by (10) (with X, R, a, a, b, T0 as chosen

above). f(w) is single valued and analytic in D except for a double pole at

w = 0. By virtue of Lemma 3, we have

fw on r, = {w: w = g(z),\z\ = 1},

"" \w + X       on T2 = {w: w = g(z), \z\ = R}.

Since g(z) is analytic and univalent in the closed annulus, the curves Tx and T2

satisfy the topological conditions of Lemma 1 and, hence, by Lemma 2, the

domain D admits a quadratus identity (*) with z0 = 0.
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