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ON STIELTJES AND VAN VLECK POLYNOMIALS

NEYAMAT ZAHEER

Abstract. Stieltjes and Van Vleck polynomials arise in the study of the

polynomial solutions of the generalized Lamé differential equation. The

problem of determining the location of the zeros of such polynomials has

been studied under quite general conditions by Marden. He has obtained

(see Trans. Amer. Math. Soc. 33 (1931), 934-944) varied generalizations of

certain results proved earlier by Stieltjes, Van Vleck, Bôcher, Klein, and

Pólya. Our object in this paper is to study certain aspects of the correspond-

ing problem in relation to yet another form of the generalized Lamé

differential equation. Furthermore, applications of our theorems to the

standard form of the generalized Lamé differential equation immediately

furnish the corresponding results due to Stieltjes, Van Vleck, and Marden (cf.

the paper cited above).

1. Introduction. Heine [2] has shown that there exist at most C(n + p - 2,p

-2) polynomials V(z) with deg V < p - 2 such that, for 4>(z) = V(z), the

generalized Lamé differential equation

(1.1) vv" + [ ¿ j^y • W + [*(z)/ ft (z - a,)] • w - 0

has a polynomial solution S(z) of degree n. Such S(z) and V(z) are called [5,

pp. 36-37] Stieltjes and Van Vleck polynomials, respectively. We observe that

the differential equation

"•+LI"'{S(í-6»)/l,(i-'-4]"'

where d>(z) is a polynomial of degree at most (/i. + ••■ + «— 2), can always

be written in the form (1.1). (Note that (1.2) is indeed of the form (1.1) if

/i  = 1 for all/.)

Various mathematicians (see Marden [6, pp. 935-936]) have, via different

methods, studied the zeros of the polynomials 5(z) and Viz) in relation to the

differential equation (1.1) by imposing suitable conditions on the singularities
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a¡, but only for positive real values of the constants a . For the first time,

Marden [6] gave the treatment of (1.1) subject to condition |arga | < y < tt/2

and obtained varied generalizations of the results (cf. Marden [6, Theorems

l(a)-2(a)]) established earlier by Stieltjes [8], Van Vleck [9], Bôcher [1], Klein

[3], and Pólya [7]. Our object in this paper is to study the zeros of the

polynomials S(z) and V(z) in relation to the differential equation (1.2). The

results thus obtained are valid for both (1.1) and (1.2), whereas the corre-

sponding known results [6, Theorems 1(a), 1(b), 6(b)], which apply only to

(1.1), become corollaries to our theorems. However, the present treatment

follows, in some aspects, the methods introduced by Marden [6, pp. 934-937].

2. Main theorems. Throughout this section, we shall freely use the following

abbreviations:

(2.1) fj(z) = "n (z - bß),   gj(z) = fl (z - ajs),   hj(z) = f£\
J /=1 J J J=l gj\Z)

for every 1 < / < p (with the convention that /(z) = 1 whenever ai = 1),

and

(2.2) F(z) = £ a, - hj(z).
7=1

We intend to prove

Theorem (2.1). If |arga-| < y < tt/2 and if all the points a\,s, b-, (occurring in

( 1.2)) lie on the line segment joining the points cx and c2, then the zeros of each

Stieltjes polynomial S(z), associated with the differential equation (1.2), lie in the

region K given by

K = {z\ \z — c, \ + \z — c2l<ki — c2\' sec/*},

where

P = {(i - IV + y}/(2?- O,        q = max{nx,n2,...,np}.

Proof. If S(z) = (z — zx)(z - z2) • • • (z — zn) is a Stieltjes polynomial

corresponding to a Van Vleck polynomial V(z), associated with (1.2), then we

know [10, Lemma (2.1)] that every zero zk of S(z) is either a point a¡s or

satisfies the equation

(2.3) \nzk)+     2     ^TT = 0       (k=l,2,...,n),
L j*k,j=\ zk       Zj

where F(z) is as defined by (2.2).

Suppose, on the contrary, that one or more zeros z,, ..., zm (say) of S(z) lie

outside the region K. Let us consider the family ÍF of all confocal ellipses

having foci at the points c, and c2. Then there passes (through each point in
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the complex plane) a unique member of S and no two distinct members of S

intersect one another. If Ex, E2 E ^(eccentricities ex, e2 respectively), then

either Ex = E2 (with ex = e2), or else one of them (say, Ex) falls inside the

other (say, E2) and in that case ex > e2. Consequently, out of the zeros

Z], ..., zm there is at least one (say, z,) such that a member Ee of S (with

eccentricity e) passes through z, and such that all the zeros z., ..., zn lie on

or inside Ee. Notice that either K is the line segment with endpoints q and c2

(in case ¡i = 0) or else that the boundary of K is a member of S having

eccentricity cos/i. (in case ¡u > 0). Since K ^ Ee, in either case, we conclude

that

(2.4) e < cos/i,.

Also, since 0 < y < tr/2 and n¡ < q, we see that [(« - \)tr + y]/(2n - 1) is

an increasing function of n and that

(2.5) 0<
("7 0^ +  7 , v     . .IT

(2n^¡r = llj   (Say)<K2' 1 < / < P.

Figure 1

Let us take a fixed point w, on the tangent T at zx to the ellipse Ee (see Figure

1) and draw straight lines joining z, to the foci c,, c2. These lines obviously

make equal angles 9 (say) with the tangent T. By elementary calculus, we can

easily verify that the minimum value (90 of 0 (with respect to all positions of

the point z, on the ellipse Ee) is given by 90 = cos~'<?, which is attained when

Zj is at an end of the minor-axis. Now inequalities (2.4) and (2.5) imply that

(2.6) e> pj v/ = i,2,...,p.
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Returning to the proof of our main theorem, we notice that a zero zk of S(z)

does lie in K if zk is one of the points 0:s. If a zero zk is none of the points ajs,

then zk satisfies (2.3). In particular (for k = 1), we have

Therefore,

Z 7 = 2 Zl        Z7

i-F(z1).(z1-Wl)+2^ = 0,
/=2 2i - ';

i.e.

y-i L 2    ,-i V *i - «i /   j-i \zi - «>/ J    7=2 V z\ - zj /

Since all the zeros zk lie on or inside the ellipse Ee, we have

(2.8) 0 < arg(^^) < tt   V/= 2, 3, ..., ai.

Also, due to inequality (2.6) and the hypotheses on a¡s and 6Y, we have (for

KJ<p)

-(tt - pj) < -(tt - 0) < arg(^-^) < -9 < "M,.

't7<ö<arKz7^)<W-ö<W-^

for every í = 1, 2, ..., ai - 1 and s = 1, 2, ..., ai . Consequently,

-(„, -»•(— H,) < arg["fi' (j^)] < "(»; " U*

w<HjU?^)] <">-*>•
for every/ = 1,2, ... ,p. Using these inequalities and the value of u from

(2.5), we conclude that

v<4ï(^)fi(^)]<-

In view of this and the hypotheses on a , we obtain

<«'      °<4Kn(^)ÀGf^)]<*
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for every/ = 1,2, ... ,p. Finally, inequalities (2.8) and (2.9) imply that the

imaginary parts of each term on the left-hand side of (2.7) are positive. This

contradicts the fact that z, satisfies (2.7). Therefore, every zero zk of 5(z) lies

in the region K. This completes the proof.

Theorem (2.2). Under the hypotheses and notations of Theorem (2.1), the zeros

of each Van Vleck polynomial V(z), associated with the differential equation (1.2),

lie in the region K.

Proof. Let tk be a zero of a Van Vleck polynomial Viz) corresponding to

an «th-degree Stieltjes polynomial S(z), associated with (1.2). Using abbrevia-

tions (2.1) and (2.2), we know [10, Lemma (2.2)] that every zero tk of V(z), if

not an a¡s, is either a zero of S'(z) or satisfies the equation

(2.10) F(t) + J¡-±--o,
7-1 lk       zj

z't 0 < j < n ~ 1) being the zeros of S '(z).

If a zero tk of F(z) is an aJs (1 </</>, 1 < s < nß, then tk is in K and we

are done. If a zero tk of F(z) is a zero of S\z), then Theorem (2.1) and Lucas'

theorem [5, Theorem (6, 2)], [4] imply that tk is in K, and the theorem follows.

In order to prove the theorem for the case when tk # a¡s (1 </</?, 1 < 5

< n) and S'itk) =£ 0, we suppose (on the contrary) that some zeros of V(z)

lie outside K. Arguing as in the proof of Theorem (2.1), we can find a zero (say,

/,) of V(z) outside K and a member Ee (with eccentricity e) of S passing

through tx such that all zeros of V(z) lie on or inside Ee. Our previous diagram

(Figure 1) and construction remains the same except that tx replaces z,. (2.10),

for k = 1, can be written as

am   f^5'(Sc4).n(Azi)} + Ci^-a
j=\   ylr=l\'i       Ml /    5=1 \'l      ajsJ J      j=\h      zj

where ux is a point on the tangent to the ellipse Ee at the point r,. Since the

points z'j lie on or inside Ee (but not on T), we obtain

(2.12) 0<arg(^-^)<77       (J = 1,2,... ,n - 1).

Replacing Z[ by i. in inequality (2.9), established in the proof of Theorem (2.1),

we obtain also the inequality

<->   •<-[>■ £63)i(£*)]<•
for every/ = 1,2,...,/?. Now inequalities (2.12) and (2.13) contradict (2.11).

Hence, every zero tk of Viz) in this case also lies in the region K. This

completes the proof of our theorem.
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An immediate consequence of the above theorems is the following result

due to Marden [6, Theorem 6(b)] concerning (1.1).

Corollary (2.3). // |arga-| < 7 < tt/2 and if all the points a- lie on the line

segment joining the points c, and c2, then the zeros of every Stieltjes polynomial

and the zeros of every Van Vleck polynomial, associated with the differential

equation (1.1), lie in the region Kx given by

Kx = {z\ \z - c, \+\z - c2|<|c, — c2\- secy).

Proof. If we put ai = 1 for every/ (so that q = 1), then (1.2) reduces to

(1.1), with the constants a-, (in (1.2)) corresponding to the constants a

occurring in (1.1). Under this reduction, the region K of the previous theorems

is indeed the region Kx and Corollary (2.3) is fairly obvious.

The above corollary expresses, for y = 0, the results stated in Theorems

1(a) and 1(b) in Marden [6], due, respectively, to Stieltjes [8] and Van Vleck

[9].
The author is thankful to the referee for pointing out the fact that Corollary

(2.3) is a result due to Marden.
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