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VANISHING SOLUTIONS OF THE

DISSIPATIVE ACOUSTIC EQUATION

IN AN EXTERIOR DOMAIN

DANIEL A. BONDY

Abstract. Except in one dimension, strictly incoming waves cannot be

propagated by the wave equation with dissipative boundary conditions so

that they disappear asymptotically in forward time.

In [4] Lax and Phillips consider the acoustic equation in an exterior domain

G cR":

| u„ = äu in G,

\ 3„w + au, = 0,     a > 0 in dG.

They assume G contains the complement of the ball of radius p. As in [4], we

define H to be the Hubert space of all initial data d with finite energy in G.

Let T(t) be the (strongly continuous) contraction semigroup formed by

mapping initial data into data at time /.

If G = R" (and the second part of (1.1) is vacuous) we will denote H by H0

and T(t) by U0(t). We note that U0(t) is a unitary group. We denote the

cogenerator (see Chapter 3 of [5]) of T(t) by T and the cogenerator of U0(t)

by U0. Let D± c H be the set of all initial data vanishing on {x| |x| < p ± t,

t > 0).

We will prove the following

Theorem. Let n be greater than 1. (Recall that G c R".) If d E D _ and

ilïO. Then lim,^ +xT(t)d ^ 0.

Before starting the proof we recall some of the material in [2], [3], and [4].

We represent the action of U0(t) on H0 as right translation on L2(R, N) (i.e.,

the set of all square integrable A'-valued functions on R) for some auxiliary

Hubert space N so that D _ is mapped onto L2(R_ — p, N). In this repre-

sentation D+ is mapped onto

L2(R+ + p,N)ifnisodd

and

DCL2(R+ + p, N)if «is even

where
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(1.2) %(s) = ^-x%(oyj,

(1.3) 3C(a) = sgna

and !T is the Fourier transform.

Since T(t)\D^ = U0(t)\D+ for t > 0, and T(t)*\D = U0(-t)\D for t > 0,

we can embed 77 onto L2(R, N) so that Tit)* acts on L2(R_ — p, N) as left

translation by / and T(t) acts on L2(R+ + p, N) (resp. %L2(R + + p, N)) if

n = odd (resp. if n = even) as right translation by t. The action of Tit) on the

rest of L2(R, N) is more difficult to describe.

Lemma 1.1. Let fis) E £>_. F/ien fis) E T*D_ if and only if fia), the

Fourier transform of fis), is zero at the point (0, — /).

Proof. Let fis) E D_. Then by Chapter III of [5] and the fact that

Tit)*fis) = fis + t) for / G R+ we conclude

/      ¿S,   fis + nt)
iT*f)is) = fis) s-lim —?—  V   —-~ .

K ' '-o+  l + '„To   (1 + 0

Taking the Fourier transform

^~\ - ,       °°   ein7(a)
(F*/)(a) = / (a) + s-lim

r^o+   1 + t „fo  (1 + 0"

/ , °° ¿.into       \

= / (a)  1 + s-lim —!—  2   —-n
y \       t^   1 + / „to (1 + t)n J

-/(«)(! -1/ia).

Since (F*/)(a) and /(a) are analytic in the lower half plane, the above

calculation shows ( F/)( - i) = 0.

Conversely if gis) G D _ and g(a) has a zero at — /', then

gio) = (a + /)(a - /)"'/(a)    for some/ G F>_.

But T* = Uffxon D_,and UqX acts as multiplication by (a + i)/(a — i)~x

in the Fourier transform of the translation representation (called the spectral

representation in [2]). To see this, note that AQ, the generator of i/0(/), acts as

multiplication by io in the spectral representation. The action of

U0 = (I + A0)(I-Aoyx

is now clear. Thus g(s) = (T*f)(s) for/ G 7)_. This proves the lemma.

Define the wave operators as

(1.4) Wx = s-\im T(t)I0UQ(-t),        W2 = s-\\m U0(-t)JT(t),
1—>00 /—»OO

where J, J0 are continuous linear maps from 77 to 770 and 770 to 77

respectively which act as the identity on D_\J D + . Define the scattering

operator S as in [4] by

(1.5) S = W2WX.

Lemma 1.2. For any d E D _
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(1.6) PDJd=PD^U0Sd.

Proof. From the definitions of Wx and W2 we have W2T = U0WX. Since

^21d   = j\d   = ^*\d+ we see tnat f°r anv d E H,

PD+U0W2d= PDWJd= W2PDTd= PDJd.

If d E £>_ we see that W.d = d so that by (1.5)

PDTd = PD+i/0[ W2W,]</ = PD+U0Sd

for any ¿ E D_.    Q.E.D.

Since l/0(0 acts as right translation by / on L2(R, N) we can calculate U0

as

(1.7) (U0f)is) = f(s) - 2e-' f   /(JK#,       /EL2(R,/V).
-'-00

The operator S on H0 = L2(R, N) commutes with U0(t) (= translation by

0 and it follows that in the spectral representation (= Fourier transform

space) the corresponding operator, denoted by S, acts on L2(R, N) by

multiplication

(S/)(o) - S(a)/(0),       /EL2(R,/V).

We now prove the theorem for the case when n is odd (=£ 1). In [4] it is

shown that § (a) has an analytic extension to the lower half plane if n is odd.

In particular it is shown that

(1.8) 5(L2(R_ -p, N)) c L2(R_ + p, N).

Proposition 1.3. Let d be a nonzero element of D_. We also assume

U0d E D_ and

(1.9) S ( - ;') is invertible.

Then U0Sd is not orthogonal to D +.

Proof. Let d E D_. Then in the translation representation d has its

support in (-co, —p\. Since 5 satisfies (1.8) we see (5/) has its support in

(-co, p]. From (1.7) it is clear that if U0Dd has its support in (-co, p] then

(1.10) 0 = (P  iSd)iS)eidS=[°°iSd)iS)esdS.

Rewriting (1.10) we see (Sd)(-i) — 0, i.e. %(-i)d(-i) = 0. By assumption,

S(— i) is invertible and we conclude d(— i) = 0. Thus by Lemma 1.1 we see

¿ E T*D_ = U<fxD_, i.e. U0d E D_. But we assumed U0d E D_. Thus

U0Sd does not have its support in (-co, p].

Since D+ = L2((p, oo), /V) in the translation representation, we conclude

that U0Sd is not orthogonal to D +.

Proposition 1.4. Le; d E D^ be nonzero and assume (1.9) /lo/ifo. T/ie«

s-lim^^ríOí/^O.

Proof. By Proposition III 9.1 of [5], it suffices to show
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(1.11) s-lim T"d =£ 0   îora\\dGD_.
«—►00

Now if d 2ê 0 we can find a smallest m > 0 so that Tmd G T*D_ = i/0" 'Z)_,

and F"W G D_. We conclude by Proposition 1.3 that U0STmd is not

orthogonal to D + . Thus by (1.6) we see PDTm+xd^0. Now let U on

A' d 77 be the minimal unitary dilation of T (see [5]). On D+ we see

T\D+= U0\D+= U\D+. Thus for« >0

0 = (7) + ,77 9 D+) = (U"D + , U"(H Q D+))

= (F"F> + , U" (77 0 7)+)) = (F"/).,., T" (77 0 7)+ )).

Thus if Tm + Xd = ß ® ß+,ß E H e D + , ß+ E D+ we see

T"ß+±T"ß   all « > 0.

Thus

\\TnTm + xd\\2=\\T"ß+ + Tnß\\2=\\T"ßl + T"ßf>\\Tnß + \\2

= ||[/on/3+||2=||/3+||2=||PD+F'"+,í7||2>0.

Thus we can conclude (1.11).    Q.E.D.

We now relax the restriction imposed by (1.9) and complete the proof of

the theorem in the odd-dimensional case.

Proposition 1.5. 7/ii G D_, then

(1.12) s-lim T(t)dJ=0.
'-►00

Proof. Recall that G contains the complement of the ball of radius p.

Define V(x, t) = u(cx, et), c > 0. Then u(x, t) satisfies

(1.13) íü» = Aü mG'>

[ dnv + ov, = 0    in 9(7', a > 0,

where G' =def {c~xg\g E G).

Define D_(v) as the subspace of initial data which vanishes on {|*| < p/c

+ t, t < 0} under the action of (1.13). Recall the definition of D_(u) as the

subspace of initial data which vanishes on (|*| < p + /, t < 0} under the

action of (1.1). It is clear that c can be chosen so that G' contains the

complement of a ball of radius less than one. By Theorem 10.10 of [4], since n

is greater than one, we can conclude that the scattering matrix for the

u-system is invertible at - i. Thus by Propositions 1.3 and 1.4, (1.12) holds for

the ü-system. But the statement of the theorem is invariant under the change

from the v to the u systems. Thus (1.12) holds for both the u and v systems

and the theorem is proven for the case when n is odd and greater than one.

We now look at the case when n is even. To prove the theorem in this case

it suffices to establish that U0Sd is not orthogonal to D+ for any nonzero d in

D_. Once this is done the argument in Proposition 1.4 (with m = 0) can be

used as before to conclude (1.11).
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Proposition 1.6. Let d be a nonzero element of D_ and let n be even. Then

U0Sd is not orthogonal to D + .

Proof. Let d E D_. Then

(Sd, D+ ) = (W2Wxd, D+ ) = (Wxd, W*D+ ) = (d, D+ ).

If Sd is orthogonal to D + , then d E D_ n D+ 1. Thus d(a) and % (a) ■ d(a)

both have analytic extensions to the lower half plane. But this is clearly

impossible unless d(a) = 0, i.e. d(s) = 0. Thus Sd is not orthogonal to D + .

Since U0~lD+ d D+ we conclude U0Sd is not orthogonal to D + .

The proof of the theorem is now complete.

In conclusion, I would like to thank the referee for pointing out that the

theorem does not hold for n = 1, by providing the following counterexample:

G = {x > a),       u = f(x + t),       /of compact support,

- ux + u, = 0    on x = a.
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