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Abstract. Let two compact, isometric surfaces with boundary be given

having positive gauss curvature. If the surfaces can be placed so that their

normal spherical images lie in a compact subset of a hemisphere of the unit

sphere and so that the isometry is the identity on the boundary then the

isometry is the identity mapping.

The proof is elementary in the sense that no integral formulae or maximum

principles for elliptic operators are needed.

An example is given of a surface satisfying the above hypotheses which is

neither convex nor has a representation in the form z = f(x, y).

1. Introduction. The purpose of this paper is to provide an elementary proof

by methods of infinitesimal rigidity of the following result:

Let two compact, isometric surfaces with boundary be given having posi-

tive gauss curvature. If the surfaces can be placed so that their normal

spherical images lie in the same hemisphere of the unit sphere and so that the

isometry is the identity on the boundary, then the isometry is the identity

mapping.

The proof is elementary in the sense that no integral formulae or maximum

principles for elliptic operators are needed. The facts quoted from [2] in §3

are derived from straightforward calculations such as occur in a basic text in

classical differential geometry of surfaces, for example [4]. However, it should

be noted that surfaces satisfying the above hypotheses need not be convex

nor have a representation in the form z = fix, y) so that certain standard

methods could not be used, at least in their simplest form (see §5).

Infinitesimal methods have been used by Cohn-Vossen [1] to prove the

unique determination of an ovaloid by its metric and by Pogorelov [5] to

prove the general monotypy theorem for convex surfaces.

The infinitesimal methods enter as follows: If A" and X" are position

vectors of two isometric surfaces then the condition dX'2 = dX"2 is equiv-

alent to dX ■ dZ = 0 where X = ¿iX" + X') and Z = |(A"' - X'). If Z is
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interpreted as a deformation field on the "mean surface" X then dX • dZ = 0

is just the condition that Z be an infinitesimal bending field on the surface X.

The methods developed in [3] are then used to show that Z is trivial.

It would be nice to prove the uniqueness theorem for ovaloids by the

present methods. The difficulty is that the mean surface need not be regular

for certain positions of the surfaces in space.

The author would like to express his thanks to the members of the

Department of Mathematics, School of Education of Waseda University for

their hospitality during his stay there and also to Professor Louis Nirenberg

for his advice and encouragement.

2. Precise formulation of the problem. All manifolds will be of class C". A

manifold with boundary will be assumed to be immersed in a manifold.

Likewise when we speak of a manifold with compact closure M, it will be

understood that M is immersed in a manifold. Any map / on such objects is

to be understood as a restriction from the containing manifold.

Let M be a compact two-dimensional, orientable Riemannian manifold

with boundary, having gauss curvature K > 0.

Let/': M—>F3 and/": M —> F3 be isometric immersions (also called

surfaces), i.e., locally one-one mappings of M in E3 of rank two such that the

metric induced on the images by F3 equals the metric of M.

Represent the surfaces by position vectors X' = f'(x) and X" = f"(x) for

x G M. Then dX'2 = dX"2 at x.

To fix our ideas we suppose the unit surface normals n' and n" are taken to

point toward the concave sides of the surfaces.

Main Result. If

L fix)-fix) for x EdM,
2. there exists a constant vector e such that e ■ n' > 0 and e ■ n" > 0,

then f\x) = fix) for x E M.

3. General considerations of infinitesimal bending theory. We here follow

Efimov [2, pp. 53-57]. Let Z be a C" vector field defined on a surface S in

F3.

Definition. Z is a bending field on S if dZ ■ dX = 0.

If u, v are local parameters on S this is equivalent to the differential

equations

(3.0) Xu-Zu = 0,   XuZv + XvZu-0,   Xv-Zc = 0,

where Xu = dX/du, etc. This is equivalent to the fact that the first fundamen-

tal form of the family of surfaces AT(w, v, t) is constant to first order in / at

/ = 0, under suitable differentiability hypotheses (with Z =dX/dt at t = 0).

It is known that if the surface is regular then a unique C vector field Y

(called the rotation field) exists such that Y x dX = dZ, or equivalently,

(3.1) YXXU = ZU,        YXXV = Zv.

Further, there exist scalars a, ß, y such that
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(3.2) Yu = aXu - ßXv,        Yv = yXu - aXv.

If Z is taken as a position vector it describes a surface called the bending

surface. Likewise Y describes the rotation surface. Both of these surfaces may

be singular even when 5 is everywhere regular, which is the usual assumption

in infinitesimal bending theory. In the present applications this assumption is

not made for S. At singular points of S, Y is not defined.

A bending field Z is said to be trivial if it is of the form Z = C X X + D

where C, D are constant vectors. Thus a trivial bending field coincides with

the velocity field of a rigid motion of S.

Two bending fields which differ by a trivial bending field are called

equivalent.

If a surface admits only trivial bendings it is called infinitesimally rigid.

4. Proof of Main Result.

Lemma 1. Let M be a two-dimensional orientable manifold with compact

closure M. Let f: M —> F3 be an immersion of M such that:

l./(M) is a surface having gauss curvature K > 0 in the metric induced by

F3;

2. There exists a constant vector e such that e ■ n > 0, where n is the unit

surface normal offiM) ihemisphere condition);

3. A bending field Z exists on /(M) with corresponding rotation field Y.

Then Y • n i= f) on the frontier of M implies Y ■ n ^ 0 oai M.

Proof. First we prove the lemma under the assumption that Y ^= 0 on M.

Suppose, by way of contradiction, that there existed a point x of M at which

F • ai = 0. Not both ( Y ■ n)u = 0 and ( Y • ai)„ = 0 at x, for, by (3.2), it follows

that Y • nu = 0 and Y ■ nv = 0. Since K > 0, nu, nv and ai are linearly indepen-

dent, so Y would vanish.

Hence, the implicit function theorem implies that an open, smooth C"

curve segment exists on M, containing x, on which Y • n = 0. The endpoints

of the segment also lie in M by hypothesis and the argument can be applied

again to extend the segment indefinitely in both directions to a simple curve a

which stays away from the frontier of M (i.e., is contained in a compact

subset of M).

f(a) may be represented by a vector X = X (s), - ce < s < +oo, where 5

is arclength.

Since K > 0, (dX/ds) ■ (dn/ds) j= 0. This, together with Y-dn/ds = 0,

implies that Y X dX/ds =£ 0 on a.

Let a be defined on a by F X dX/ds = Aai. À never vanishes and simple

compactness arguments show that À and e ■ n are bounded away from zero on

o. Hence

d(e-Z)       dz ¿x
- = —-■ -e = Y X —— -e = Xe ■ n » 0.

ds ds ds
Thus e ■ Z would be unbounded on the compact set M. Thus the assumption

that Y ■ ai = 0 leads to a contradiction.
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We conclude the proof of Lemma 1 by showing that if Y is any rotation

vector satisfying the hypothesis, then a rotation vector exists which satisfies

the same hypothesis but never vanishes.

The spherical image mapping, n: /(A/) —> U = the unit sphere, takes M to

the compact subset of the open hemisphere of U defined by hypothesis 2, i.e.,

{A' G U: e • X > 0}. Hence if g is any nonzero vector sufficiently close in

direction to e then (n ° f)M lies in the hemisphere {X E U: g ■ X > 0). In

other words there exists an open solid half-cone C of vectors g such that

g ■ n > 0 where n = in ° f)x for x E M, g E C.

By hypothesis,   Y ■ n ^ 0 on the frontier of M.  Suppose for example

Y • n > 0 there. Since the frontier of M is compact,  Y • n has a positive

minimum, m, there.

The rotation surface 7? described by the position vector Y cannot contain an

open subset of F3. Hence there exists a constant vector g0 G C such that

Y - g0 ^ 0 for any Y E R and such that | g0| < m. Hence we have Y • n >

m > g0 ■ n > 0 on the frontier of M.

It follows that Y - g0 is a rotation vector for the bending field Z - g0 x X

(equivalent to Z) such that ( Y - g0) ■ n > 0 on the frontier of M. By the first

part of our proof ( Y - g0) • n > 0 on M. Hence Y ■ n > 0 on M.

Similarly the assumption Y ■ n < 0 on the frontier of M leads to Y ■ n < 0

on M.

Note. The proof yields a somewhat stronger conclusion: If Y ■ n % 0 on

the frontier of M then there exists a vector g0 such that Y • n S g0 ■ n í 0 on

M.

Lemma 2. Let the hypothesis be as in Lemma 1 except that f need not be of

rank 2 on the frontier of M. Then Zu X Zv =£ 0 on the frontier of M implies

Zu X Zv =£ 0 on M.

Proof. At any point of M (but not necessarily on the frontier of M, since Y

need not be defined there)

ZUXZV = (YX Xu) X(YX Xv) = (Y-Xu X XV)Y.

Thus Zu X Zv = 0 on M if and only if Y ■ n = 0.

By continuity of Zu X Zc there is a closed neighborhood N of the frontier

of M such that Zu X Zv =£ 0 there and such that the hypotheses of Lemma 1

are satisfied by Y ■ n on M - M n N.

Proof of Main Result. Define X = i (A" + X"), Z = \iX" - X'). As

mentioned in the introduction, dX ■ dZ = 0, so Z is a bending field on the

surface X, which may be singular.

xuxxv = \(x: + x:)x\(x^ + x:)

= Î iK x K + x; x x; + x'u x x; + x; x x; ),

and
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zuxzc = \ix; -xi)x\{x: -xé)

= \{x¿ x x; - x; x x; - x'u x x; + x; x x; ),

so

xuxxv + zuxzv = \ (x: x x; + x; x x; ),

hence

(4.0) e ■ Xu X Xv + e ■ Zu X Zv > 0    on M

follows from hypothesis 2. But e ■ Xu X Xv > 0 on aM since Zu X Zv = 0

there. Hence there is an open set U of M such that e ■ Xu X Xv > 0 on U and

U is adjacent to aM, that is, part of the frontier of U is 3A/. Thus X is regular

on U.

Let U* he the maximal open subset of M on which e ■ Xu X Xv > 0. The

frontier of U* is the union of two disjoint sets, aM and a set A on which

e ■ Xu X Xv = 0. A may be empty, in which case U* = M.

Define Zx = Z + Xe X X where À is an arbitrary real number. Zx is a

bending field on X equivalent to Z.

(ZX)X (ZA)„- {Zu + Xe X Xu) X (Z0 + Xe X Xv)

=  Zu X  Zf
(4.1)

+ \[(Z„ -Xv)e- (Zu ■ e)Xv + (Zv • e)Xu - (Ze • XJe]

+ X2(e-XuX Xv)e.

The linear dependence of Zu and Zc on aM together with (3.0) imply that on

aM,

(ZX)X (ZJe= X[(ZV- e)Xu - (Zu- e)Xv] + X2(e ■ Xu X Xv)e.

Now Xu, Xv, e are linearly independent on aM so

(4.2) (Zx)uX(Zx)^0   onSA/ifA^O.

From (4.0) it follows that on A, Zu X Zv ^ 0. Since A is compact |Z„ X

Zv\ » 0 on A. Since (Zx)u X (Zx)v is a uniformly continuous function of À on

A it follows that (Zx)u X (Zx)v =£ 0 on A for |A| sufficiently small. Hence, by

Lemma 2,

(4.3) (Zx )u X (Zx )vi= 0   on U* for small |A| if A ̂  0.

U* u oM is a regular surface with boundary, represented by the position

vector X, so a unique rotation vector Y corresponding to the bending field Z

exists such that Y X dX = dZ. Since

dZx = dZ + Xe X dX = (Y + Xe) X dX,

Y + Xe is the unique rotation vector for Zx.

(44) (Zx)uX (Zx)v=[(Y + Xe) X Xu] x[(Y + Xe) X Xc]

= [(Y + Xe)-(XUXXV)](Y + Xe).

By (4.3) the last term in square brackets, call it qx, does not vanish on V* if

|A| is small but not zero.
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But Y ■ Xu X Xc = 0 on dM (put X = 0 in (4.1) and in (4.4)) so qx is

positive or negative on 9A7, and hence near 3A7, according as À is positive or

negative.

Since qx does not vanish on U* it also is positive or negative on all of U*

according as À is. Hence, by continuity, q0 = 0 on U*.

This is equivalent to Y ■ n = 0, where n = Xu X XV/\XU X Xv\. It follows

from (3.2) that Y ■ nu = 0 and Y ■ nv = 0.

Now it is known (cf. introduction) that the gauss curvature of the mean

surface X is positive at regular points if the gauss curvatures of X' and X"

are. Therefore n, nu, nv are linearly independent, hence Y = 0. By (3.1)

Zu = 0 and Zv = 0 so Z is constant on U*. Since Z = 0 on dM, Z = 0 on

U*. By (4.0) A is empty, hence U* = M and Z = 0 on M.

5. An example of a nonconvex surface satisfying the hypotheses. There is a

tubular surface constructed on the cylindrical helix which satisfies the condi-

tions of §2 but is neither convex nor has a representation of the form

2 =f(x,y).

Let

X (t) = a(i cos t +/sin t + ctk)

where i,j, k are orthonormal basis vectors and a and c are positive constants.

This is a vector representation of a helix lying on a cylinder of radius a. Let

X(v) be a representation of the helix in terms of arclength o and let o,, v2, v3

be the Frenet triple of the helix, and r a positive constant. Then the surface

X (u, v) = X (v) + r(v2(v) cos u + v3(v) sin u)

is a tubular surface (or canal surface) whose cross-sections by the normal

planes of the helix are circles of radius r (cf. [4, p. 76, Exercise 6.7.4]).

Elementary calculation using the Frenet equations yields

Xu X Xc = r(\ - rn cos u)(v2(v) sin u + v2(v) cos u)

so the surface is regular if r < 1/k, where k is the curvature of the helix. Also,

k ■ Xu X Xv = r(l - /-K cos u)(a(a2 + c2)~' 2 sin u)

and the gauss curvature is K = — k cos w/Vg . Thus if we restrict u to

satisfy m + E<u<\'n-e where e is a small positive number we obtain a

surface whose closure has positive gauss curvature and has its spherical image

in a hemisphere. If v is restricted to a closed interval then all of the conditions

of §2 are satisfied. Such a surface is clearly not convex and cannot be

represented in the form z = f(x, y) if the interval in which t; lies is

sufficiently large.
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