HEEGAARD SPLITTINGS AND A THEOREM OF LIVESAY

J. H. RUBINSTEIN ${ }^{1}$

Abstract

Let M be a nonorientable 3-manifold which is double covered by $S^{2} \times I$. We give a short proof of the theorem of Livesay [1] that M is homeomorphic to $P^{2} \times I$ (where P^{2} denotes the projective plane).

0 . Let M be a compact connected nonorientable 3-manifold with ∂M consisting of two copies of P^{2} and $\pi_{1}(M)=Z_{2}$. Using the analysis of the Heegaard splittings of S^{3} in [4], we prove the following

Theorem [1]. If the orientable two-fold cover of M is homeomorphic to $S^{2} \times I$ then there is an annulus A embedded in M with $A \cap \partial M=\partial A$ consisting of two simple closed noncontractible curves, one in each component of ∂M.

As in [1] the fact that M is homeomorphic to $P^{2} \times I$ follows immediately. We divide the proof of this theorem into a number of steps, working throughout in the PL category.

1. Let $r: M \rightarrow P$ be a retraction such that r restricted to each component of ∂M is a homeomorphism. r can be chosen transverse to a simple closed noncontractible curve α in P. Then $r^{-1}(\alpha)$ is a compact 2 -manifold embedded in M. Exactly as in [1] it follows that $r^{-1}(\alpha)$ contains a component K which is orientable, one-sided and has ∂K equal to two noncontractible simple closed curves, one in each component of ∂M.

Let $p: S^{2} \times I \rightarrow M$ be the double covering and let $g: S^{2} \times I \rightarrow S^{2} \times I$ be the covering transformation. Let L denote $p^{-1}(K)$. If W is the closure of a component of $S^{2} \times I-L$, then $W \cup g W=S^{2} \times I$ and $W \cap g W=L$.

Clearly we can assume without loss of generality that K is incompressible, i.e., there is no disk D embedded in M with $D \cap K=\partial D$ and ∂D a noncontractible curve in K. Also it will be supposed that genus $K>0$, i.e., K is not an annulus.
2. We show that K incompressible implies W is a handlebody. By [2] there are disjoint simple closed noncontractible curves C_{1}, \ldots, C_{m} in ∂W such that the normal closure of the elements of $\pi_{1}(\partial W)$ given by joining each C_{i} to the base point along some path for $1 \leqslant i \leqslant m$ is $\operatorname{Ker} \Phi$ (where $\Phi: \pi_{1}(\partial W) \rightarrow$ $\pi_{1}(W)$ is induced by the inclusion map).

Received by the editors December 15, 1975.
AMS (MOS) subject classifications (1970). Primary 57A10; Secondary 55A35.
Key words and phrases. Heegaard splitting, system of meridian surfaces, handlebody.
${ }^{1}$ The author held a Melbourne University Research Fellowship during this research.

By [3], C_{1}, \ldots, C_{m} bound disks D_{1}, \ldots, D_{m} in W which can be easily made disjoint from each other, with $D_{i} \cap \partial W=C_{i}$ for all i. Without loss of generality we can assume that C_{1}, \ldots, C_{m} lie in L. Let $N\left(D_{i}\right)$ (or $N(L)$) be a small closed regular neighbourhood of D_{i} (or L) in W (or $S^{2} \times I$) and let J denote the boundary of $g W \cup N(L) \cup N\left(D_{1}\right) \cup \cdots \cup N\left(D_{m}\right)$. Then J is mapped homeomorphically into M by p.

Suppose that J is not a union of 2 -spheres. Let X, Y be the closures of the components of $M-p(J)$, with X homeomorphic to W-int $N\left(D_{1}\right)$ $\cdots \cdots-\operatorname{int} N\left(D_{m}\right)$ and Y equal to $N(K) \cup p N\left(D_{1}\right) \cup \cdots \cup p N\left(D_{m}\right)$ (where $N(K)=p N(L))$. Then there is a simple closed noncontractible curve C in $p(J)$ which contracts in X or Y by [2]. As C_{1}, \ldots, C_{m} give rise to elements of $\pi_{1}(\partial W)$ which normally generate Ker Φ, C must contract in Y.

Consequently by [3] there is a disk D embedded in Y with $D \cap \partial Y=\partial D=$ C. Since K is incompressible, $D \cap K=\varnothing$ can be arranged. But $N(K)-K$ is homeomorphic to $L \times(0,1]$ and so $Y-K$ is homotopically equivalent to $L \cup D_{1} \cup \cdots \cup D_{m}$. This implies that C contracts in $L \cup D_{1} \cup \cdots \cup D_{m}$ and therefore also in J, which is a contradiction.

This establishes that J is a union of 2 -spheres and the fact that W is a handlebody follows directly.
3. Let genus L be denoted by n. By [4] since ∂W gives a Heegaard splitting of S^{3} with two open 3-cells removed, there is a good system of meridian surfaces $D=D_{1} \cup \cdots \cup D_{n}$ in W and a D-coordinate system $\bar{D}=\bar{D}_{1}$ $\cup \cdots \cup \bar{D}_{n}$ in $g W$. As defined in (2.1) of [4], this means that D, \bar{D} are both collections of disjoint disks, such that $C_{i} \cap \bar{C}_{j}$ is a single transverse crossing point for $i=j$ and is empty for $i>j$, where $C_{i}=\partial D_{i}=D_{i} \cap \partial W$ and $\bar{C}_{j}=\partial \bar{D}_{j}=\bar{D}_{j} \cap \partial g W$ for all i, j. Without loss of generality we can assume that C_{i}, \bar{C}_{i} are contained in L for all i.

Then also $g \bar{D}$ is a good system of meridian surfaces in W and $g D$ is a $g \bar{D}$-coordinate system (with the ordering of the disks reversed). We want to separate the systems (D, \bar{D}) and ($g \bar{D}, g D$) as in Lemma (2.5)(2) of [4]. Clearly we can assume that D and $g \bar{D}$ are transverse and $D \cap g \bar{D}$ consists of arcs only (any simple closed curves can be easily eliminated). Also it can be supposed that $D \cap g \bar{D} \cap g D=\varnothing$.
4. Here D, \bar{D} (or $g \bar{D}, g D$) correspond to v, w (or x, y) in [4]. Let k be an arc of $D_{i} \cap g \bar{D}_{j}$ and let $N(k)$ be a small closed regular neighbourhood of k in W.

We can apply the procedure of Lemma (2.5)(2) to the system D, \bar{D} and the arc k, producing a new system $D^{\prime}, \bar{D}^{\prime}$. Next the same construction employed on $g \bar{D}^{\prime}, g D^{\prime}$ (or $\bar{D}^{\prime}, D^{\prime}$ with the reverse ordering of disks again) using the arc k (or $g k$) gives as outcome a system $g \bar{D}^{\prime \prime}, g D^{\prime \prime}$ (or $\bar{D}^{\prime \prime}, D^{\prime \prime}$).

It is easy to see that $D^{\prime \prime}, \bar{D}^{\prime \prime}$ is a good system of meridian surfaces for the splitting given by $W^{\prime \prime}, g W^{\prime \prime}$ and $L^{\prime \prime}=W^{\prime \prime} \cap g W^{\prime \prime}$, where $W^{\prime \prime}=(W-$ int $N(k)) \cup g N(k)$. Also $D^{\prime \prime} \cap g \overline{D^{\prime \prime}}$ has at least one component less than $D \cap g \bar{D}$ and so after a finite number of steps we find that $D \cap g \bar{D}=\varnothing$ is achieved.
5. We can now utilize the argument in Satz (3.1) of [4]. As in (3.2) of [4], it follows that: By modification of D only we reach that $g D \cap C_{n}$ contains at most one point (and furthermore $D \cap g \bar{D}=\varnothing$ still holds).

The proof is by induction on the number of points in $g D \cap C_{n}$, where C_{i} and $g C_{j}$ are assumed transverse for all i, j.

Case 1. Some curve $g C_{j}$ meets C_{n} in at least two points.
By the method in [4], an arc k of C_{n} is found satisfying ∂k is contained in $g C_{j}$ and int k is disjoint from $g D \cup \bar{D}$. Also if f and h are the arcs of $g C_{j}$ with $\partial f=\partial h=\partial k$ then both $g C_{j}^{0}=k \cup f$ and $g C_{j}^{1}=k \cup h$ contract in $g W$. As $\underline{D} \cap g \bar{D}=\varnothing, k$ is also disjoint from $g \bar{D}$. Therefore $\left(C_{j}^{0} \cup C_{j}^{1}\right) \cap \bar{D}=C_{j} \cap$ \bar{D} and we can suppose that $C_{j}^{0} \cap \bar{C}_{j}=\varnothing$.

We replace C_{j} by $C_{j}{ }^{1}$. Since (int $\left.k\right) \cap \bar{D}=\varnothing, C_{j}{ }^{1}$ bounds a disk $D_{j}{ }^{1}$ in W with $D_{j}{ }^{1} \cap g \bar{D}=\varnothing$. If $j \neq n\left(\right.$ or $j=n$) then $g C_{j}{ }^{1} \cap C_{n}\left(\right.$ or $g C_{n}^{1} \cap C_{n}^{1}$) has at least two points less than $g C_{j} \cap C_{n}$ (or $g C_{n} \cap C_{n}$), assuming the intersection is made transverse.

Case 2. $g C_{j}$ meets C_{n} in at most one point for all j, but $g D \cap C_{n}$ contains at least two points.

As in [4] there is an arc k of C_{n} with $k \cap \bar{D}=\varnothing$ and $\partial k=k \cap g D=(k$ $\left.\cap g C_{i}\right) \cup\left(k \cap g C_{j}\right)$, for $i<j$ say. Let C_{j}^{\prime} be the curve given by joining C_{i} and C_{j} along $g k$. Then $C_{j}^{\prime} \cap \bar{D}=\left(C_{i} \cup C_{j}\right) \cap \bar{D}$ since $g D \cap \bar{D}=\varnothing$, and $g C_{j}^{\prime} \cap \bar{D}=\varnothing$ because $k \cap \bar{D}=\varnothing$. Finally as $C_{n} \cap g C_{n}$ has an even number of points, $i, j \neq n$. Therefore replacing C_{j} by C_{j}^{\prime}, we decrease the number of points in $g D \cap C_{n}$ by one.
6. Remark. $g D \cap C_{n}=\varnothing$ implies that C_{n} contracts in $g W$ as well as W and so C_{n} is null homologous in ∂W, which contradicts $C_{n} \cap \bar{C}_{n}$ is a single transverse crossing point.

So we can assume that $g C_{j} \cap C_{n}$ is a single transverse crossing point and $g C_{i} \cap C_{n}=\varnothing$ for all $i \neq j$, where $j \neq n$. In particular, $g C_{n} \cap C_{n}=\varnothing$. Let $W^{*}=\left(W-\operatorname{int} N\left(D_{n}\right)\right) \cup g N\left(D_{n}\right)$ and let $L^{*}=W^{*} \cap g W^{*}$. Clearly L^{*} is a g-invariant surface in $S^{2} \times I$.
Let $D^{*}=D-D_{j}-D_{n}$ and let $\bar{D}^{*}=\bar{D}-\bar{D}_{j}-\bar{D}_{n}$. Since $C_{i} \cap g \underline{C}_{n}=\varnothing$ for all $i \neq \underline{j}, D^{*}$ is contained in W^{*} with $D^{*} \cap L^{*}=\partial D^{*}$. Also as $\bar{D} \cap g D$ $=\varnothing$ and $\bar{C}_{i} \cap C_{n}=\varnothing$ for all $i<n$, it follows that \bar{D}^{*} is included in $g W^{*}$ and satisfies $\bar{D}^{*} \cap L^{*}=\partial \bar{D}^{*}$. Consequently D^{*} is a good system of meridian surfaces and \bar{D}^{*} is a D^{*}-coordinate system for L^{*}.
7. Clearly the pair D^{*}, \bar{D}^{*} found in $\S 6$ satisfies $D^{*} \cap g \bar{D}^{*}=\varnothing$. Let us denote $p\left(L^{*}\right)$ by K^{*}. Then K^{*} has genus one less than K and using the system D^{*}, \bar{D}^{*} we can repeat the argument in $\S \S 5$ and 6 above. Consequently after a finite number of steps the genus of K is reduced to zero and the theorem is proved.

References

1. G. R. Livesay, Involutions with two fixed points on the three-sphere, Ann. of Math. (2) 78 (1963), 582-593. MR 27 \# 5257.
2. C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281-299. MR 19, 441.
3. , On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 19, 761.
4. F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968), 195-203. MR 37 \#3576.

Department of Mathematics, University of Melbourne, Parkville, Victoria, Australia 3052

