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INDUCTION ON SYMMETRIC AXIAL MAPS

AND EMBEDDINGS OF PROJECTIVE SPACES

A. J. BERRICK

Abstract. A homotopy class of axial maps P" x P" -> P"+k determines

an invariant in ,"n(Vn+k + i<n+x) (2k > n + 2). If an axial map is symmetric

and has trivial invariant it extends to a symmetric axial map /"* x f"*1

-> pn+k+i. An immersion of P" in R"+k lifts to an immersion of S" in Rn+k

and so has a Smale invariant. For j: R"+k «-» Rn+k+2, 2k > n + 2 (resp.

2k > n + 3), any embedding a: P" -» Rn+k with trivial Smale invariant

induces an embedding of P"+l in R"+k+1 whose restriction to P" is regularly

homotopic (resp. isotopic) to ja.

Let P" denote real projective Ai-space. A map P" X P" —> P"+k is axial if it

is homotopic to the inclusion P" —> P"+k when composed with either inclu-

sion P" -> * X P" -h> P" X P", Pn -* P" X * -> P" X Pn, and symmetric ax-

ial if also it is equivariant with respect to the interchange involution on

pn x pn ancj jjjg trjvjaj involution on Pn+k. This note defines an invariant of

the homotopy class of such a map and examines the consequences of its

vanishing.

Let /: S" X S" -> S"+k have f(x, -y) = -f(x,y). Then exponential corre-

spondence yields a map /': Sn -* Yn+k + Xn+x, where Yrs is the space of

antipodal-involution-preserving maps from Ss~x to Sr~ introduced in [5, §1].

For 2ac > ai + 2,/' lifts by [5, (1.1)] to a map into the Stiefel manifold

Vn+k + x¡n+x, whose homotopy class <fy G ttn(Vn+k + x n+x) is an invariant of the

equivariant homotopy class of/. If/covers an axial map/: P" X P" -» P"+k,

we write <j>? equally for <b¡.

Lemma 1. Suppose 2k > ai + 2. Let f be a symmetric axial map P" X P"

-» Pn+ whose invariant <fy G trn(Vn+k + x n+x) is the trivial element. Then i °f

extends to a symmetric axial map g: P"+l X P"+l -+ pn+k + l (/: pn+k

^> pn+k+l). Further, if symmetric axial f: P" X P" -» Pn+k is homotopic to f,

then i ° /' extends to g" homotopic to g; iff is moreover symmetric homotopic to

/(i.e. via a symmetry-preserving homotopy), then g' is symmetric homotopic to g.

Proof. Let/: S" X Sn -» S"+k cover/ The condition ensures that/may be

extended to/, : CS" X S" -» Sn+k, where CS" = {S" X /)/(5" X {1}). Make

the identification SN+l = CSN U {SN X [0,-l])/{SN X {-1}). Then/, ex-
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tends to/2: CS" X CS" -* Sn+k+x by

MX'Wtt" " \[fx([y,(t - s)/(l - s)),x),s],   s < t

f2 extends to g: Sn+l X S"+l -» S"+k+i by means of

.)/i\ - t)],y),t],   t<s,

g([u,-s],[v,t]) = -gi[-u,s],[v,t]),   s > 0,

gi[u,s],[v,-t}) = -gi[u,s],[-v,t]),   t > 0.

Clearly g gives rise to a symmetric axial map g: Pn+] X Pn+i -» />n+A:+1. The

required homotopy properties are easily verified.

Note. This result generalises as follows (using the terminology of [2]). If a

homotopy class of symmaxial maps of type in, k) has trivial invariant in

^niK+k + l n+i)> tnen '' extends to a homotopy class of symmaxial maps of type in

+ 1, k). Needless to say, the details of the proof are rather technical.

Let a: S" -> R"+k be an immersion. Its differential map of tangent bundles

induces (upon trivialising the stable tangent bundle of 5", as in [1, §3]) a map

fa: S" X S" -> Sn+k which is linear on the second factor, thus yielding an

invariant <ba E trn(Vn+k+Xn+x) of the regular homotopy class of a. <pa is defined

for arbitrary n, k. However, when 2k > n + 2, it follows from [5] that

$„ = <rV ' justifying our notation. This invariant is applied in [4, (3.8)], to

deduce nonimmersion results for P" in R" .In the particular case where a is

the standard embedding s: S" =-» Rn+l °-> Rn+k, it is readily seen that d», = 0.

For immersions a of S" in R"+ there is another, better known, regular

homotopy invariant, viz. the Smale invariant iï(a,s) E irn(Vn+kn) of [7]. Let

J- K+k,n "■» Vn+k+\,n+\ be the inclusion map. Then/„ Q(a, j) = <t>a - <t>s by [6,

(3.1)]. However/„, is an isomorphism for k > 1.

Lemma 2. If a: S" -* R"+k is an immersion (k > 1), then its Smale invariant

vanishes precisely when <f>a vanishes.

Now any immersion of P" in Rn+k lifts to an immersion of S" in Rn+k, so

we may define its Smale invariant to be that of the lifting. Combining the

above lemmas with [3] establishes the following result.

Theorem 3. For 2k > n + 2, any regular homotopy class of embeddings of P"

in Rn+k with trivial Smale invariant extends to a regular homotopy class of

embeddings of Pn+X in Rn+k+2 ; for 2k > n + 3, any isotopy class of embeddings

of P" in Rn+k with trivial Smale invariant extends to an isotopy class of

embeddings of Pn+X in Rn+k+2.

Alternatively, we may use [1, (1.4)] instead of Theorem (1.2) of [3]. Then the

following result may be deduced from the combination either of Lemmas 1, 2

above with [3, (1.1)] and [1, (1.4)], or of Lemma 2 with the generalisation of

Lemma 1 cited above, [2, Theorem 1] and [1, (1.4)].
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Theorem 4. // there exists an embedding of P" in R"+ with trivial Smale

invariant, then P"+  immerses in R"+ + .

It is amusing to note by contrast that for 2k > max(4, ai + 2) any embed-

ding of S" in R"+k extends to an immersion of S"+1 in R"+k. This follows from

[6] and [7, Theorem E].
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