A SIMPLE PROOF OF A THEOREM OF CHACON

ROBERT CHEN

ABSTRACT. A short and simple proof of a theorem of Chacon is presented by an application of a maximal inequality. A pointwise convergence theorem and the submartingale convergence theorem follow immediately from the theorem.

Here we present a short and simple proof of a theorem, due to Chacon [3], which implies a pointwise convergence theorem [1] and the submartingale convergence theorem [1], [2], [4].

THEOREM (CHACON). Let $\{X_n\}$ be a sequence of integrable random variables such that $\liminf_{n\to\infty} E(|X_n|) < \infty$. Let

$$X^* = \limsup_{n \to \infty} X_n, \quad X_* = \liminf_{n \to \infty} X_n,$$

and T be the collection of all bounded stopping times. Then

(1)
$$\limsup_{\tau,t\in T} E(X_{\tau} - X_{t}) \geqslant E(X^{*} - X_{*}).$$

Further, if $\sup_{\tau \in T} E(|X_{\tau}|) < \infty$, then X^* and X_* are integrable.

PROOF. By Lemma 1 of [1] and the Borel-Cantelli lemma, we can choose two strictly increasing sequences $\{\tau_k\}$ and $\{t_k\}$ of bounded stopping times such that $\lim_{k\to\infty} X_{\tau_k} = X^*$ almost surely and $\lim_{k\to\infty} X_{t_k} = X_*$ almost surely. Hence, the second assertion follows immediately from Fatou's lemma and we need only prove (1). To prove (1), it suffices to show that

(2)
$$\sup_{\tau,t\in T} E(X_{\tau} - X_{t}) \geqslant E(X^{*} - X_{*}).$$

It is also easy to see that, under the assumption of the theorem, if

Received by the editors February 10, 1976.

AMS (MOS) subject classifications (1970). Primary 60G40; Secondary 60F15, 60G99.

Key words and phrases. Bounded stopping time, Fatou's lemma, generalized sequence, Lebesgue's dominated convergence theorem, maximal inequality, submartingale convergence theorem.

 $\sup_{t \in T} E(|X_t|) = \infty$, then $\sup_{\tau,t \in T} E(X_\tau - X_t) = \infty$. Hence, we can, and do, assume that $\sup_{\tau \in T} E(|X_t|) < \infty$.

To prove (2), we need the following maximal inequality, which I learned from Chacon and Sucheston.

(3)
$$\lambda P\left(\left[\sup_{n}|X_{n}| \geqslant \lambda\right]\right) \leqslant \sup_{\tau \in T} E(|X_{\tau}|)$$
 for each positive constant λ .

To see (3), let M be a fixed positive integer and define a bounded stopping time τ by $\tau(w) = \inf\{n|1 \le n \le M, |X_n(w)| \ge \lambda\}, \tau(w) = M + 1$ if no such n exists, $w \in \Omega$. Then

$$\lambda P\left(\left[\sup_{1\leqslant n\leqslant M}|X_n|\geqslant \lambda\right]\right)\leqslant E(|X_\tau|)\leqslant \sup_{t\in T}E(|X_t|).$$

(3) follows immediately on letting $M \to \infty$.

Now let λ be a positive constant, $\gamma(w) = \inf\{n | |X_n(w)| \ge \lambda\}$, $\gamma(w) = \infty$ if no such n exists, $w \in \Omega$. Let $A = [\gamma < \infty]$, $Y = \lambda_{X_{A^c}} + |X_{\gamma}X_A|$, $Y_n = X_{n \wedge \gamma}$ for all $n \ge 1$, $Y^* = \limsup_{n \to \infty} Y_n$, and $Y_* = \liminf_{n \to \infty} Y_n$. By Lemma 1 of [1] and the Borel-Cantelli lemma, we can choose two strictly increasing sequences $\{\tau_k\}$ and $\{t_k\}$ of bounded stopping times such that $\lim_{k \to \infty} Y_{\tau_k} = Y^*$ almost surely and $\lim_{k \to \infty} Y_{t_k} = Y_*$ almost surely. Since $|Y_t| \le Y$ for all $t \in T$ and $E(Y) \le \lambda + \sup_{t \in T} E(|X_t|) < \infty$, by Lebesgue's dominated convergence theorem, $\lim_{k \to \infty} E(Y_{\tau_k} - Y_{t_k}) = E(Y^* - Y_*)$. So $\sup_{\tau,t \in T} E(Y_{\tau_k} - Y_t) \ge E(Y^* - Y_*)$. Since $\{Y_t | t \in T\} = \{X_{t \wedge \gamma} | t \in T\}$ is a subset of $\{X_t | t \in T\}$, $\sup_{\tau,t \in T} E(X_{\tau_k} - X_t) \ge E(Y^* - Y_*)$. By (3), (2) follows on letting $\lambda \to \infty$ (since X^* and X_* are integrable).

COROLLARY 1 (THEOREM 2 OF [1]). Suppose that $E(|X_n|) < \infty$ for all $n \ge 1$ and $\liminf_{n \to \infty} E(|X_n|) < \infty$. Consider the following two statements.

- (a) The generalized sequence $\{E(X_{\tau})|\tau\in T\}$ is convergent.
- (b) X_n converges almost surely to a finite limit.

Then (a) implies (b).

COROLLARY 2 (THE SUBMARTINGALE CONVERGENCE THEOREM). Suppose that $\{X_n\}$ is a sequence of L_1 -bounded random variables adapted to the increasing sequence $\{\mathfrak{F}_n\}$ of σ -fields. Suppose that $E(X_{n+1}|\mathfrak{F}_n) \geqslant X_n$ a.s. for all $n \geqslant 1$. Then X_n converges almost surely to a finite limit.

REMARK. The theorem and Corollary 1 also hold under any one of the following two conditions.

- (i) $\sup_{n} E(X_{n}^{+}) < \infty$.
- (ii) $\sup_{n} E(X_{n}^{-}) < \infty$.

ACKNOWLEDGEMENTS. I would like to thank Professors Chacon and Sucheston for their valuable suggestions and comments. I also want to thank the referee for his invaluable and useful suggestions.

REFERENCES

- 1. D. G. Austin, G. A. Edgar and A. Ionescu Tulcea (1974), Pointwise convergence in terms of expectations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30, 17-26. MR 50 #11402.
- 2. J. R. Baxter (1974), Pointwise in terms of weak convergence, Proc. Amer. Math. Soc. 46, 395-398.
 - 3. R. V. Chacon (1974), A "stopped" proof of convergence, Advances in Math. 14, 365-368.
- 4. C. W. Lamb (1973), A short proof of the martingale convergence theorem, Proc. Amer. Math. Soc. 38, 215-217. MR 48 #3119.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FLORIDA 33124