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A ONE-SIDED SUMMATORY FUNCTION

E. Y. STATE1

Abstract. A method is given for summing one-sided series by employing

the psi function. 2J¡°=1 «"**(") ¡s evaluated in closed form when k > 2 is

an integer.

The use of the function tr cot trz for the purpose of evaluating series of the

form S-«) fin) is classical (cf. [2]). Most one-sided series however, even such

simple ones as 2"=o (" + 0 > are beyond its reach. A function which does

sum one-sided series is ty(—z) where ty(z) = T(z)/T'(z) and T(z) denotes the

gamma function. This is one consequence of Theorem 1, but probably not its

most important one. More important, we believe, are the identities one obtains

by a careful selection of admissible functions / Some examples are given in

Theorem 3.

Let C„ = (z G C\ \z\= (n + j)} and let / be any meromorphic function

none of whose poles lie on &„. (If any poles of / are on S„ we may alter C„

slightly so that the offending poles are inside the modified contour.) Then

applying Cauchy's residue theorem we obtain

Theorem 1. 7/limn_>00{(2777)    feJ(z)ty(-z)dz) = A, where \A\ < oo, then

A = 2 Res (f(z)ty(-z))

where the sum is taken over all the poles za of f(z)ty(—z) in the complex plane

and the sum is ordered by \za\.

We now separate the poles of f(z)ty(— z) into two disjoint sets Sx and S2

according to whatever result we wish to establish. Then we get

2 Res (f(z)ty(-z)) = A - 2 Res (f(z)ty(-z))
Sx s2

where the sums may be given by the appropriate limits if necessary.

In the particular case where / = p/q is a rational function with degq

> 2 + degp and none of the poles of/occur at the nonnegative integers the

following well-known result obtains (cf. [1]).

Theorem 2. If the partial fraction decomposition off is given by
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Pjf\ - 2 r^S + 2 ̂ S + • • • + 2 -^S?(z)        ,  (z + a,)       /  (z + a.)2 ,  (z + a¡f

where k = (max s\(z + a¡)s divides q(z)) < deg«? and the summations are over

the zeros of q(z), none of which occur at 0 or a negative integer, then

2 /(«) = - 2 c„ *(a,) +12 C/2*'(«,)

(1)

Proof. The terms on the left-hand side of (1) come from the poles of ^(-z)

while those on the right arise from the poles of/ Thus it suffices to show that

nm„->x fe /(z)^(_z)^z = 0- Choose n sufficiently large to ensure that the

zeros of q(z) are inside Qn and then deform Qn into the square with vertices

(n + j)(±l ± i). Let An, Bn, Cn, Dn denote the vertices of the square begin-

ning with An in the bottom left-hand corner and proceeding counterclockwise.

In view of our assumptions we havep(z)/'q(z) = kz~ + 0(z~3) on the square.

Since the asymptotic expansion

*(z) ~ logz - ¿ - 1 %rK

where the Bernoulli number B2r is defined by

l-e~<      i+2 + rèx(2r)\'   '

is valid for |argz| < it, we estimate the integral on the three segments

AnBn, CnDn, DnAn to be 0(n~l+e) where 0 < e < 1. We obtain the same

estimate on Bn Cn by employing the identity

^(z) = ^l(-z) - \/z - it eoitrz.

Note that cot ttz is bounded on Bn Cn.   Q.E.D.

Remark 1. The purpose for giving the above proof is a twofold one. First

of all, the only proofs of Theorem 2 that we know of employ finite difference

techniques (cf. [5]), although D. H. Lehmer [3] recently obtained a restricted

version by elementary means. Our main intention, however, was to indicate

how one obtains estimates for J^ f(z)^(-z)dz.

Remark 2. The following result is well known; f(3) = 2^=0 (rt + 0

= —j^"(l), where f denotes  the  Riemann zeta function.  It is a  trivial

consequence of Theorem 2.

It is clear that if/is a well-behaved meromorphic function, then 2-oo/(w)

= 2^=0 {/(«) +/(_1 _ «)}• We are thus led to consider
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¿4 {/(*) +/(-! - z)}tyi-z)dz = ±,feJiz){tyi-z) - ty(\ + Z))dz

1   f
= =-: I   f(z)cottrzdz

2/ ¿e» ̂

as usual. Similarly many one- and two-sided series of the form 2 g in) fin)

where g is periodic, can be dealt with by the above methods. We note the

following consequence of Theorem 2.

Corollary. Let gin), n > 0, be any ireal- or complex-valued) function which

is periodic with period k and satisfies 2„Io ¿?(") = 0- Suppose that /(z)

= (z + a)     where a G C ani/ a ¥= 0 or a negative integer. Then

Jo/<»>,^-xf*(^>

Proof. We have

*2 *(/■)(* + ̂ )    = * 2* gW/(^ + r) = *44
r=0 \ "      / r = 0 ?W

where #(z) = T[r Z0 ikz + a + r) and the polynomial

clearly has degree at most k — 2. Since

oo oo   /c-1

2 /(«)«?(«) =22 gir)fikt + r),
«=0 '=0 r=0

the result follows easily from Theorem 2. This generalizes Theorem 8 of [3].

Let/^(z) = z~ktyi~z). By much the same argument as above one can show

that for each integer k > 2, lim^^ f& fkiz)tyi~z)dz = 0. Then by the

residue theorem we obtain

Theorem 3. For every integer k > 2, the following identity holds:

(2)       2 2  «"**(«) - Kik + 1) - lySik) - 2 W)ttk -1+1).
n=\ 1=2

Here f denotes the Riemann zeta function and y = 0.577215664 • • • is Euler's

constant.

Proof. The determination of the residue of z~ ty (—z) at a positive integer

is easily accomplished by means of the following well-known identities for the

ty function.

tyiz)   =   tyi\   -  Z)  - 77 COtvTZ, *(1   +  Z)   =   tyiz)  + Z"' .
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It is easily shown that

lim U(z - n)2z-k*2(-z)} = (2 - k)n~k^ + 2n~k<ff(n).
z->n dz

Also, by the second identity noted above we have

z-k*2(-z) = z~k[z~x + *(1 - z)]2.

Since the representation

*(1 - z) = -y -  2  Un)z"-]
« = 2

is valid for  \z\ < 1   (cf. [1]),  the coefficient of z~'  in the expansion of

z-k^2(-z) is

-U(k + 1) + 2y!ik) + 2 f(0f(* - I + O.
1=2

and this is the residue at 0.   Q.E.D.

Next consider the functions gk(z) = z~k<k(z). Proceeding as before we

obtain the following formula for each odd integer k > 3:

00

2 2 /!-**(/i) = -2£ik + 1) - 2yf(*)
n=\

+ 2 (-i)'í(/)i(*-/+!)•
/=2

Our method does not yield corresponding formulas for the even integers since

the residues of z~2p'^(z)^— z) at ±n cancel one another.

Comparison of (2) and (3) for each odd integer k = 2p - 1 > 3 yields

(4) (2/» + l)f(2/>) = 22 S(2l):?(2p - 21).
i=]

Since

£(2») = (-ir+10)2n B2n/2(2n)\,

we obtain the following relationship between the Bernoulli numbers due

originally to Nörlund [4, p. 142]

(2p+l)B2p = -Pz(22Piy2lB2p_2!.

Remark. The lack of a second expression for 2 n~k¥(n) when k > 4 is

even is regrettable since such an expression would immediately yield relation-

ships between the values of the Riemann zeta function at the even and the odd

integers.

Finally, let
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2p+\

Ap=   2   (-l)/f(/)f(4/?-/ + 4).
p 1=2

Then for k = Ap + 3, equation (3) may be written as follows:

00

AB =   -\ï2i2p + 2) + Yf(4p + 3) + £i4p + 4) +  2  n^^tyin).

Hence

* «-!

2  (¿r(2«) - J(2/i + 1)) =  lim A   = \,

a result which can easily be derived by elementary methods.
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