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ZERO SETS AND EXTENSIONS

OF BOUNDED HOLOMORPHIC FUNCTIONS IN POLYDISCS

P. S. CHEE

Abstract. A sufficient condition for a hypersurface in a polydisc U" to be

the zero set of an HX(U") function is proved. This strengthens a result of

Zarantonello and generalizes a result of Rudin. Using this result and a result

of Andreotti and Stoll, a partial extension of Alexander's theorem on

extension of bounded holomorphic functions from a hypersurface of U" to

U" is obtained. Finally, a generalization of Cima's extension theorem for Hp

functions is given.

1. Introduction. Let U" be the open unit polydisc in the space C of n

complex variables. Let N(U") and HpiU"), 0 < p < oo, denote the Nevan-

linna and Hardy classes respectively. (For definitions, see [6].) Rudin [6,

Theorem 4.8.3] first gave a sufficient condition for the zero sets of 77°°(C/").

Later, Zarantonello [9] gave a sufficient condition for the zero sets of NiU").

In this paper, we show that Zarantonello's condition is also a sufficient

condition for the zero sets of HxiU"). This generalizes both the results of

Rudin and of Zarantonello, and answers a question raised at the end of [9].

Next we consider the extension of bounded holomorphic functions from a

hypersurface of U" to U". This problem has been discussed by Alexander [2]

and Andreotti and Stoll [3]. Using the above result, and a theorem of

Andreotti and Stoll, we give a partial extension of Alexander's extension

theorem.

Finally, a generalization of the extension theorem of Cima [4] is given in

§5.

2. Notations. The following notations will be used. If 0 < r < 1, then

Uir) = {z G C: \z\ < r); as usual, we write U for C/(l). If 0 < r < s, then

Qir, s) = {z G C: r < \z\ < s}. The unit circle {z G C: |z| = 1} is denoted

by T and the unit n-torus by T" = T X ■ ■ ■ X T in copies). T" is the

distinguished boundary of U".

If S2 is an open subset of C, then 77 (Í2) denotes the set of all holomorphic

functions in Q, and 77°°(fi) denotes the subset of all bounded ones. The zero

set of / G 77(ß) is Z(/) = /"'(O).

A subvariety E of U" is said to satisfy Zarantonello's condition if
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there exists a constant 0 < r < 1 and a continuous function

tj= [r, 1) —»[/-, 1) such that

/ |z,|+ • • •  +|z„   ,1 \

for all z = (z„ . . . , z„) E F n ö"(/?, 1).

3. Zero sets of HX(U"). The following theorem gives a strengthening of the

result of [9]. The proof is similar to that of [9].

Theorem 3.1. Suppose n > 2 and f E H(U"). If E = Z(f) satisfies

Zarantonello's condition (2.1), then there exists an F E HK(U") such that

/= Feh for some h E H(U").

Proof. Choose an r E (0, 1) and a continuous function tj: [r, l)—>[r, 1)

such that (2.1) is satisfied. Fix r' E (r, 1). Choose c such that

1 > c > c' = sup{r](x): r < x < 1 - (1 - r')/ (n - 1)}.

Let

V, = f/-1 X U(r') X [/"-',        1 < i < n - 1,

K = Ô"-1^ 1) X U.

Further, let

& = Ô'"1^ 0 X Ö(V') X ö"—1 (r, 1) X ö(c, 1),        1 < i < n - 1.

Note that

V¡ n vk = [/'-' x £/(/•') x f/*-'-1 X í/(r') X U"~k,

I < i < k < n - I,

and

^ n Vn = g'-1^. 1) x Q(r,r') X g"-'-1 (r,l)x(/,        1 < i < /i - 1,

are polydomains whose distinguished boundaries are products of the

boundaries of the factors. In particular, the distinguished boundary of V¡ n

Vn is contained in that of Q¡, 1 < i: < « — 1.

The polydomains { K,: 1 < i < «} form an open cover of {/". They can be

enlarged to form an open cover of U" such that the intersection of the

enlargement of V¡ with U" is V¡. We proceed to construct bounded Cousin

data for the cover {Vf\ and then apply Stout's theorem [8].

Suppose   1 < / < n - 1.   If   (z,_, z„_,)  E   ôi_,(r, 1) X ö(/-, /) X

ß-'-'ir, 1) and/(z„ ...,*„_„ z„) = 0, then

/ |*i|+ • • • +K-i| \
N<^(-^ri-)<c <c-

Hence dist(Z(/), Q¡) > 0. It follows from Rudin's theorem [6, Theorem 4.8.3]

(applied to the restriction of / to V¡) that there exists an F¡ E Hx( V¡) such

that FJ~[ is an invertible element of H(V¡), and F~i is bounded in Q¡.
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Next, we show that the same is true in Vn. Fix ï E Q"~\r, 1). Then/(z',-)

has finitely many zeros in U, by the hypothesis on /. Let these zeros be

ax(z'), . . . , ak(z'), listed according to multiplicities. Put

(3.1) F„(z) =Jl(zn- «,(z')),        z = iz',zn) G Vn.
1

Then k is independent of z' and Fn G 77 (KJ (see [9, p. 312]). Clearly, Fn is

bounded and has the same zeros as/in Vn. Since dist(Z(/), Q¡) > c - c' >

0, it follows that \Fn\ > (c - c'f > 0 in Q¡. Hence F~x is bounded in Q¡,

1 < i < n- 1.

Since, for all i, FJ~ ' is a zero-free holomorphic function in K,, so is FfFy1

in F, n Vk, for all /, k. We claim that P}/^-1 is bounded in Vi n Vk, 1 < i,

fc < n.

Suppose 1 < ; < k < « - 1. Then F¡Fkx is holomorphic in V¡ n Kt and

is bounded in g^.. The distinguished boundary of V¡ n Vk is contained in Qk.

Hence, by the maximum modulus theorem, F¡Fkx is bounded in V¡ n Vk.

Similarly, FkF~x is bounded in V¡ n F*.

Suppose 1 < i < « — 1. Then 7^Fn-1 is holomorphic in V¡ n Fn and is

bounded in g(. Since the distinguished boundary of V¡ n V,, is contained in

that of Q¡, the maximum modulus theorem again shows that FtF~x is

bounded in V¡ n Fn. Similarly, FnF~l is bounded in   I7, n K„.

Hence, for all i, k, F^-1 is an invertible element of 77°°(F, n Vk). By

Stout's theorem [8], there exists an F G HxiU") such that FFrx is an

invertible element of 77X(V/), 1 < i < n. Since F]/-1 is an invertible element

of H(V¡), it follows that F/_1 is zero-free in Vt, 1 < / < n. Since {!/,: 1 < ¡'

< n) covers U", Ff~l is zero-free in t/" and so there exists an h E H(U")

such that/= Feh.

Remark. For later applications, we note that for each /', there exists

4>, E Hx(Vi) such that i>rx E H00^) and F = 7%. Hence F"1 is bounded

in Q¡, 1 < i < n - 1.

4. Extensions of bounded holomorphic functions. Using the results of §3 and

of Andreotti and Stoll [3], we can now give a partial extension of the result of

Alexander [2].

Theorem 4.1. Let E be a subvariety of U", n > 2, of pure dimension n — 1,

satisfying condition (2.1) and the following condition of Alexander:

there exists a 8 > 0 such that if r is as in (2.1), 1 < i < n,

(4.1) iz', a, z")    and   iz', ß, z") E E n [Ql~\r, 1) X  U X

Qn~lir, \)\,    and    a ^ b, then \a - ß\ > 8.

Then for all bounded holomorphic functions g on E, there exists a bounded

holomorphic function G in U" such that G = g on E.

Proof. Fix r' G (r, 1). Let c, V¡, Q¡ be as defined in §3. It was shown in [2]

that there exists / G H(U") such that E = Z(f) and d//3z, ¥= 0 on E n
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[Q'~\r, 1) X U X Q"~'(r, 1)], 1 < / < n. By Theorem 3.1, there exists F E

H°°(U") such that /= Feu for some u E H(U"). Hence 3F/3z,. ^ 0 on

E n [ß'"V. 1) X Í/ X g""'(r, 1)], 1 < i < /i. By the remark at the end of

§3, there exists ^ E H°°(Vn) such that t//"1 E Hx(Vn) and F= F^. By

condition (4.1) and definition (3.1) of F„, it follows that |3F„/3zJ is bounded

from 0 on F n Vn. Since 3F/3z„ = ^3F„/3z„ on F n V„, it follows that

there exists e > 0 such that |3F/3z„| > e on F n K„.

Let g E H°°(E). For 1 < i < n — 1, it follows from Alexander's theorem

[2] that there exists g¡ E HX(V¡) such that g = g, on F n V,. We show that

the same is true in Vn.

By Cartan's theorem (see [6, Theorem 7.1.2]) there exists (/> E H(U") such

that <#> = g on F n K„. Let (ï, zn) E Vn, and let

/ N+ • • • +|^-i| \s=i——i—J-

Choose a positively oriented circle y with center 0, lying in Q(s, 1) and

enclosing zn. Put

j_ r »(¿so   dt
h(Z'Z">      2tri JyF(z',t)   t-i

Then h is independent of the choice of y and h E H ( Vn). Let g„ = <¡> — hF.

Then g„ = g on F n Vn. We claim that g„ E Hx(Vn). Let y„ . . . , yk be

small circles about the zeros ax(z'), . . . , ak(z') of F(z',-). Then by the

computation given in [2, p. 488],

u    uvv>    ^     4        ^',otj(z')) F(z',zn)
(cb - hF)(z ,zn)= 2*

ftx (3F/3zn)(z',«,(z'))     zn-aj(z')-

Since F = Fn^, each F(z', zn)/(zn - otj(z')) is bounded on Vn. Since |3F/3zn|

> e on F n Vn, and each (z', olj(z')) E E C\ Vn, it follows that g„ = <¡> - hF

is bounded on Kn.

For 1 < i < k < n, and z = (z', z„) E K, n Vk, put

a*^ - 2^7 Í
^'.0        *-*„•

where y is a positively oriented circle with center 0 and radius > max(c, |zn|).

Then aik is independent of the choice of y and aik E H ( Vl, r\ Vk).

Suppose 1 < i < k < n — 1. Since F = 0 on E and 3F/ 3z„ ̂  0 on F n

Vn, F(z'',■) has simple zeros. Since gi, - gk = 0 on E n K, n Kfc, it follows

that (g¡ - gk)F~l is holomorphic in V¡ n K^ n Vn. Therefore, by Cauchy's

integral formula, aik = (g, - gk)F~l in Vi n K^. n Kn. Since this is an open

subset of V¡ n Vk which is connected, we must have

Si - gk = aikF    in  K,. n  K^.

Since F_1 is bounded in Q¡, and the distinguished boundary of V¡ n Vk is

contained in Q¡, aik E H °°( F) n F^) by the maximum modulus theorem.
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Suppose 1 </'<«- 1. Then by the reasons given above, (g, - gn)F~x is

holomorphic in V¡ n Vn. So by Cauchy's integral formula,

St - in - ainF   in V¡ n Vn.

Since F ~ ' is bounded on Q¡, and the distinguished boundary of V¡ n Vn is

contained in Q¡, it follows by the maximum modulus theorem that ain E

H-Wn vn).
Now we conclude by Theorem 2.8 of [3] that there exists a G G Hco(U")

such that G = g on E.

Remark. Alexander has shown that if E satisfies Rudin's condition that

dist(F, T") > 0, together with condition (4.1), then there exists a bounded

linear operator T: 77°°(F) -* H°°(U") such that Tf = f on E.

It follows quite easily from the open mapping theorem that under the

hypothesis of Theorem 4.1, there exists a constant M such that every

/ G HX(E) has an extension F G HX(U") satisfying ||F||y. < M||/||£ (see

[10, p. 517]). However, we do not know if the extension F can be chosen to

depend linearly on /.

5. Removable singularities. Let F be a closed subset of U". For 0 < p < oo,

we say that/ G Hp(U" - E) if /is holomorphic in U" - E and \f\p has an

«-harmonic majorant in U" — E. If E is empty, this condition is equivalent to

the usual one, namely,

sup    I   \f(rw)\p dm(w) < oo,

where m is the normalized Haar measure on T". (See [6, Chapter 3].) We wish

to consider whether F is a set of removable singularities of /.

For n = 1, Parreau [5, p. 182] has proved that if E has logarithmic capacity

zero, then every / G HP(U - E) can be extended to an F G HP(U). For

n > 1, it is a result of Shiffman [7, Lemma 3] that every set E with

(2/1 — l)-dimensional Hausdorff measure zero is removable for/ G H°°(U").

If 1 < p < oo, Cima [4] has shown that E is removable if F is a hypersurface

of U" satisfying Rudin's condition: dist(F, T") > 0. We show that in Cima's

result, Rudin's condition can be replaced by Zarantonello's. Furthermore, we

only require \f\p to have an «-harmonic majorant in U" — E instead of an

7?P-majorant as in [4].

Theorem 5.1. Let n > 2, 0 < p < cc. Suppose E is a subvariety of U" of

pure dimension n — 1 satisfying condition (2.1). Iff G Hp(U" - E), then there

exists an F E HP(U") such that F = f on U" - E.

Proof. Since the case limJ_>1r/(j) < 1 is covered by [4], we may assume that

limM,ij(i) = 1.

Suppose/ G HpiU" — E). We show first that/extends to a holomorphic

function in U". By Theorem 2.1, there exists g E HxiU") such that E =

Z(g). Let a = (a,, . . . , an) E E. If g(z', an) ^ 0 as a function of z', then by

the proof given in [4, p. 531], / extends to a holomorphic function in U". If
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g(z', an) = 0, then there exist a positive integer a and a function g, E H(U")

such that g(z) = (z„ - an)agx(z), where g,(z', a„) sé 0. Hence Z(g) = {z E

U": zn = an) \J Z(gx). Since by the proof given in [4, p. 531], / extends

holomorphically over both {z E U": zn = an) and Z(gx), it follows that

there exists F E H(U") such that F = / on U" - E.

To show that F E HP(U"), we note first that by the w-subharmonicity of

\F\",

sup    I   \F(rw)\p dm(w) =   sup    I   |F(jw', twn)\p dm(w),

where t = ¿(1 + tj(î)), w = (w', w„) = (wx, . . . , wn_v wn). By hypothesis,

there exists an n-harmonic function u in U" - E such that \F\P < u in

t/" - F. Hence

(5.1) f |F(w', íwn)|/'í/w(w) < f u(sw',twn)dm(w).

It is therefore sufficient to show that the last integral is bounded as s —» 1.

For r' E (r, 1), let r, = max{n(x): r < x < /•'). Then u is /i-harmonic in

the polyannulus Q"~x(r, r') X ô(r,, 1). If r, < r < 1, then by a well-known

result (see e.g. [1, Chapter 5]), we have

I u(sw', twn) dm(wn) = ».(.îvv^log t + vx(sw')
JT

where w, and vx are (n — 1) harmonic in Q"~l(r, /•'). Repeated integration

gives

I   u(sw', twn) dm(w) = 2 (a, log t + ß^logs)'
JT" ,=o

where a„ ßi are constants. Since both s and / are bounded from 0 and oo, it

follows that the right side of (5.1) is bounded as s-*l. This completes the

proof.
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