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LINEAR GENERALIZATIONS OF GRONWALL'S INEQUALITY

JAGDISH CHANDRA AND PAUL W. DAVIS

Abstract. A variety of linear generalizations of Gronwall's inequality,

including recent multivariable results of D. R. Snow and E. C. Young, are

subsumed and extended by simple arguments involving the resolvent kernel

of the integral operator.

"Everyone knows" that Gronwall's1 inequality [5] is but one example of an

inequality for a monotone operator % in which the exact solution of

w = a + %w provides an upper bound on all solutions of u < a + %u.

Nevertheless, this idea is often neglected in deriving new variants of this

classical inequality.

Here Gronwall's inequality is generalized to systems of n linear inequalities

in m variables by arguments that amount to manipulation of the resolvent

kernel equation for %. These results encompass work of Chu and Metcalf [4],

Snow [9], [10], Walter [11] (with a restriction noted below), Wendroff [1], and

Young [14] as well as providing extensions to kernels having more general

form and weaker regularity properties.

Let Gix) and 77 ix) denote real-valued n X n matrices and a(x) and u(x)

denote /.-vectors, all of which are continuous functions of x = (jc,, . . . , xm).

Let x° be a fixed /n-vector and jxx<¡ dy denote the multiple integral

ix% " ' ' fx\ dyx ■ ■ ■ dym. Inequalities hold component-wise and 7 is the iden-

tity matrix.

Theorem. Let Gix), H ix) be continuous, nonnegative matrices for x° < x.

If

(1) u(x) < a(x) + G(x)(XH(y)u(y)dy,       x° < x,

then

(2) u(x) < a(x) + G(x) Cv(x,y)H(y)a(y) dy,       x° < x,
Jx°

where V(x, y) satisfies

(3) V(x,y) = 7 + fXH(z)G(z)V(z,y) dz,       x° < y < x.
J y
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1 Bellman [2], Reid [8], and Peano [7] deserve credit as well.
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Proof. In the norm in [11, pp. 141-142], the integral operator % on the

right side of (1) is a contraction on the segment x° < x < x' for any fixed x'.

The resulting Neumann series consequently converges uniformly on any such

compact set to a resolvent operator (i — %)~\ which is monotone because

% is monotone.

A sharp bound on u(x) is therefore the exact solution of w = a + %w.

The usual manipulations of the Neumann series, e.g. [13, pp. 147-149], show

that this solution is just the right-hand side of (2), where G(x)V(x, y)H(y)

appears as the resolvent kernel of G(x)H(y). The resolvent equation for %

is (3) premultiplied by G(x) and postmultiplied by H(y); cf. [13, equation

(37.9)].   D
With G(x) = I and other restrictions, Snow [9], [10], Young [14], and

Walter [11, pp. 143-144] have obtained inequalities like (2). Snow and Young

regard V(x, y) as the Riemann function for the initial-value problem

equivalent to (3). (The equivalence of (3) and Snow's result [9] for a system of

two inequalities follows from Snow's hypothesis that H(y) is selfadjoint,

which forces the same property on V.) Walter treats a more general region

than x° < x, but he defines V via the Neumann series for the operator in (3).

Corollary 1. Let a(x) > 0 and G(x), H(x) > 0 for x° < x. Define

J(Zl) = I** ■  ■  ■    fXmH(Zl> *2> • • • > Zm)G(ZV Z2> • • • ' Zm) dz2 '  '   '  dzm
Jyi Jym

and suppose that J(zx) commutes with exp fylJ(sx) dsx for all z, > yx > x°x. If

u(x) satisfies (1), then

(4)    u(x) < a(x) + G(x)fXexp(fXH(z)G(z) dz\H(y)a(y) dy,    x° < x.

Proof. Let E(z, y) = fzyH(s)G(s) ds. Since exp E(x, y) is increasing in

any component of its first argument, we have

fXH(z)G(z)exp E(z,y) dz< fXtJ(zx)exp( f2lJ(sx)dsx) dzx
Jy Jyi \Jyi I

= exp E(x,y) — I.

Consequently, exp E(x, y) satisfies an integral inequality of which V(x,y) is

the exact solution in the case of equality; cf. (3). The fundamental argument

of the theorem (that the solution of the equality provides a bound on all

solutions of the corresponding inequality) now forces V(x, y) < exp E(x,y),

and (4) follows from (2).   □

Corollary 1 extends a two-variable, scalar inequality originally due to

Wendroff [1, p. 154, equation (30.2)].

In general, (4) is not sharp unless the inequalities depend only on a single

scalar independent variable.

Corollary 2. Let the vector a(t) and the nonnegative matrices G(t), H(t)

be functions of the single scalar variable t for t° < t. Assume that H(t)G(t) and

J',oH(s)G(s) ds commute for t° < t. If (1) holds (with t, t° in place of x, x°),

then
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u(t) < a(t) + G(i)Jo'exp( j"77(r)G(r) dAfí(s)a(s) ds,       t° < t.

Proof. Integration reveals that (3) is satisfied by

V(t,s) = exp f'H(r)G(r)dr.    Q
•'s

This corollary restates a result of Chu and Metcalf [4], which was obtained

by summing a Neumann series, and it includes the classical inequalities of

Gronwall et al. Willet's technique [12, Lemma 1] for treating kernels which

are sums of terms like G(t)H(s) could be used to solve (3) and thereby

extend Corollary 2 to kernels of this more general form.

The commutativity assumptions in the preceding corollaries are imposed to

permit integration of the matrix exponential function.

In the case of a scalar independent variable, Miller [6, pp. 189-201] has

derived the resolvent kernel equations for a system of Volterra integral

equations whose kernels are not necessarily continuous. The obvious exten-

sion of these results to several independent variables yields a substantially

weakened form of the theorem. (The regularity condition given below is not

the most general. See [6, pp. 200-201].)

Alternate Theorem. Let G(x), H(x) be commuting, nonnegative matrices

which are merely square integrable on x° < x = ixx, . . . , xm) < x' for each

fixed x' > x°. 7/(1) holds a.e. on x° < x, then (2) and (3) hold a.e. on x° < x.

A differential analysis like that of Snow and Young obviously requires

revision if the Riemann function V is defined by a differential equation

whose coefficients may not be continuous. The integral equation approach

taken here avoids this difficulty by requiring only enough smoothness in G

and 77 to ensure that the resolvent kernel actually provides a solution of the

integral equation.

The authors have also obtained multiple-index, discrete analogs of Gron-

wall's inequality by a similar approach. In the near future, they intend to

unify both sets of results under an appropriate Volterra-Stieltjes integral

equation formulation.

See [3] for a discussion in a similar spirit of nonlinear generalizations of

Gronwall's inequality.
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