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UNIQUENESS IN THE SCHAUDER FIXED POINT THEOREM1

R. B. KELLOGG

Abstract. A condition is given which guarantees the uniqueness of the

fixed point in the Brouwer and Schauder fixed point theorems. The result is

applied to a nonlinear boundary value problem in physiology.

1. Let A' be a real Banach space with a bounded convex open subset D, and

let F : D —> D be a continuous function which is also assumed to be compact

if X is infinite dimensional. The Brouwer fixed point theorem (Schauder

theorem if X is infinite dimensional) gives a point x G D such that x = Fix).

Under the assumption that F is differentiable, we give a simple condition

which guarantees that the fixed point x is unique. The proof is an application

of degree theory. We phrase the argument for the infinite dimensional case;

the reader who is interested only in the finite dimensional case may omit the

compactness hypothesis.

In the last section, the result is applied to a nonlinear boundary value

problem arising in physiology.

2. Suppose that F : D —> D is compact and continuously Fréchet differen-

tiable in D. Then [4, Lemma 4.1] F'(x) is a compact linear operator on X for

each x E D. Our uniqueness result is

Theorem. Let F : D -» D be a compact continuous map which is continu-

ously Fréchet differentiable on D. Suppose that (a) for each x E D, 1 is not an

eigenvalue of F'(x), and (b) for each x E oD, x ^ F(x). Then F has a unique

fixed point.

In order to prove the Theorem we require a lemma. For the Lemma, recall

that for any compact linear operator A the spectrum, a (A), of A consists of a

countable number of points having 0 as the only possible limit point. Each

nonzero A G a (A) is an eigenvalue of A. For such a A, the null space of

(A — XI )k is, for all k sufficiently large, independent of k. The dimension of

this null space is called the algebraic multiplicity of the eigenvalue A.

Lemma. Let A be a compact linear operator on a real Banach space X.

Suppose 1 E a (A), and let ß(A) denote the sum of the algebraic multiplicities of

all X E a (A) with X real and A > 1. Then there is an e > 0 such that if B is a

compact linear operator on X and \\A - B\\ < e, then (- l)ß(A) = (- l)ßw.

Proof of Lemma. Let B be a compact operator with \\A — 2?|| < e, where

e will be determined in the course of the proof. Letting e < 1, we see that
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Il ¿Il < M = \\A\\ + 1. Let Q be an open rectangle in the A plane with two

sides on Re A = 1 and Re A = M, and the other two sides on Im A = ± a.

Let T denote the boundary of Q. We pick a > 0 so small that oiA) n Q

consists only of real eigenvalues. Then r n aL4) = 0. For e sufficiently

small, we have T n o(77) = 0 [2, p. 213]. Let 7^(A) = (A7 - A)~x be the
résolvant operator of A, and set

PA = Uxi-AyxdX.

Then PA is a projection whose range is the union of the eigenspaces of A

corresponding to the eigenvalues A G Q n oiA) [2, p. 178]. Thus, setting

diPA) = the dimension of the range of PA, we find that diPA) is the sum of

the algebraic multiplicities of the eigenvalues A G oiA) n Q. Defining PB in a

similar way, we have a similar result for diPB). For e sufficiently small, we

have HP, - Pall < 1, so diPA) = diPB) [2, p. 33]. Since oiA) n Q consists
only of real eigenvalues, and since A G oiA) satisfies |A| < M, we have

diPA) = ßiA). If A G a(77) is complex, then X Ga(77), and A and Ä have the

same algebraic multiplicity. Hence diPB) = /3(77) + even number. Combin-

ing these facts, we find that ßiA) and /3(77) have the same parity, which

proves the lemma.

Proof of Theorem. We first show that F has a finite number of fixed

points. For supposing otherwise, let xk = P(xA), k = 1, 2, . . . , be a

sequence of fixed points. Since F is compact we may, after picking a

subsequence, suppose that xk -» x G D, Fix) = x. Hence x G D. By the

spectral condition, 7 - F'(x) has a bounded inverse, so from the inverse

function theorem [5, Theorem 1.20], 7 — F(x) is (1-1) in a neighborhood of x,

contradicting (7 - F)(xy) = 0. Let xx, . . . , xN denote the fixed points of F.

Let Uj be a neighborhood of x^_such that the closed sets Uj are pairwise

disjoint and t/, c D. Let 7C = D \ {(J fUj}, so K is a closed subset of D

which does not contain a fixed point of F. Then the quantities

deg(0,1 - F,D)    and    deg(0,1 - F, Uj)

are well defined, and from the excision and additive properties of the degree

[5, Proposition 3.37], we have

deg(0,1- F,D) = deg(0, / - F, D \ K) - 2 deg(0,1 - F, Uj).
j

Without loss of generality we may suppose 0 G D. Then 77 (x, t) = x —

íF(x), 0 < t < 1, defines a homotopy of F with the identity function 7. Since

0 G D, 7F(x, 0 *= 0 for x G 3D, for otherwise x = iP(x) + (1 - /)0 G D,

which is a contradiction. Hence deg(0, 7 - tF, D) is defined, so using this

homotopy,

deg(0,7-F,7)) = deg(0,7,Z))= 1.

From [4, Theorem 4.7],

deg(7- F,0, UJ) = i-\)ß(x>)

where, in the notation of the Lemma,  ß(x) = ßiF'ix)). Since F"(x) is
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continuous, we see from the Lemma that the parity of ß(x) is constant for

x E D. Hence I = ± N, so N — I and the fixed point is unique.

Remarks. (1) The same argument gives a uniqueness condition for the

fixed point theorems of Altman and Rothe [5, Chapter 3]. (2) We thank Dr.

John Osborn for help in proving the Lemma.

3. To illustrate our result, we consider the nonlinear boundary value

problem

Í -DC" + {vC)' =f{x),       0<x<l,

() [C'(0) = 0, C(l)-a>0,

(2) v'=-Jix,C),       e(0) = 0.

This system of equations was used by Diamond and Bossert [1] to model salt

and water transport in a closed-ended tube, such as a sweat gland. The

diffusion coefficient D > 0, the function J(x, C) represents an osmotic

transport of water out of the tube, and the function fix) represents a source

of salt into the tube. We assume that these functions are sufficiently differen-

tiable, and that

(3) f{x)>0,       Jcix,C)<0,

where the subscript C denotes the partial derivative.

We write (1), (2) as a fixed point problem as follows. Let Cx(x) be a

continuous function, and with C = C,, let v(x) be the solution of (2). Then

with v(x) given, there is a unique solution C = C2 of (1). To see this, we

integrate (1) to obtain

- DC{(x) + vix)C2ix) = /, ix) = (Xf(t) dt.

Letting t>, denote an indefinite integral of v, we may then solve this equation

to get

C2ix) = a exp{- D~l[vxil) - vxix)]}

(4) fi
+ £>-'/  fxit)exp{-D->[vxit)-vxix)]}dt.

J X

We have thus defined a map FiCx) = C2 on the Banach space X of

continuous functions on [0, 1].

The problem of solving the system (1), (2) is equivalent to the problem of

finding a fixed point of F. From (4) and (3) we see that C2(x) > 0. If

Cx(x) > 0, we have from (3), v(x) > w(x), where w(x) = -/£/(/, 0) dt.

Hence for t > x, vx(t) - vx(x) > b(t — x), where b is independent of Cx(x).

Using this in (4), we find that there is a constant K such that, for any

Cx(x) > 0, C2(x) < K. If we let D c X denote the convex set defined by the

inequalities 0 < C(x) < K, we have proved that F(D) c D. It is easy to see,

using (4), that F is continuous, compact, and in fact continuously Fréchet

differentiable. Thus from the Schauder fixed point theorem, there is a fixed

point C = F(C), and hence a solution v(x), C(x), of (1), (2). To show that

there is a unique fixed point, we must calculate the derivative of F. Setting

C2 = F(CX), C2 = F'(CX)CX, it may be verified that Cx, C2 satisfy the linear
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problem

- dc2" + ivc2y + ivc2y = o,     c¿(0) = c2(i) = o,

ô" + Jc (x, C, )C, = 0,       t5(0) = 0.

To apply our Theorem, we suppose C, G D. We must verify that 1 G

oiF'iCx)); that is, that 1 is not an eigenvalue of F'iCx). Supposing the

contrary, let C be an eigenfunction of F\CX) with eigenvalue 1. Then

C2 = C, and hence there is a nontrivial solution ¿(x), C(x), of the problem

(5) - DC" + (vC2)' + (vC)' = gx(x),

(6) t3' + .7c(x, C,)C = g2(x),

(7) C'(0) = C(l) = t3(0) = 0,

with gx(x) = 0, g2(x) = 0. It may_ be verified that (5)-(7) defines a closed,

densely defined operator on (v, C) G L2(0, 1) X L2(0, 1), that the resolvent

operator is compact, and that the adjoint operator is given by the solution of

the problem

(8) - <p' - Q// - A,(x),

(9) - DxP" - of + Jc<p = h2(x),

(10) *'(0) = *(1) = <p(l) = 0.

Using the Fredholm alternative and the compactness of the resolvent opera-

tor associated with the problem (5)-(7), we conclude that there are functions

tp(x), >Kx), not identically zero, which satisfy (8)-(ll) with hx(x) = 0, h2(x)

= 0. We must have \p'(l) ¥= 0, since otherwise, by the uniqueness of the

solution of the terminal value problem associated with (8), (9), we would have

<p = 0, \p = 0. Let x < 1 be the largest zero of »//', and suppose that \p'(x) > 0

in (x, 1). Since C2 = F(CX) E D, we have C2(x) > 0 in [0, 1]. Hence from

(8), x is the largest zero of <p', and <p'(x) < 0 in (x, 1). Hence ^"(x) > 0,

(p(x) > 0. Using (3), we see that the left side of (9) is < 0 at x - x. This is a

contradiction and proves that 1 is not an eigenvalue of F'(CX). Hence by our

Theorem, there is a unique fixed point of F, and a unique solution u(x), C(x)

of (1), (2) with C(x) > 0.
Remark. In [3] there is given a more detailed study of osmotic flow in a

tube.
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