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UNIQUENESS IN THE SCHAUDER FIXED POINT THEOREM'
R. B. KELLOGG

ABSTRACT. A condition is given which guarantees the uniqueness of the
fixed point in the Brouwer and Schauder fixed point theorems. The result is
applied to a nonlinear boundary value problem in physiology.

1. Let X be a real Banach space with a bounded convex open subset D, and
let F: D — D be a continuous function which is also assumed to be compact
if X is infinite dimensional. The Brouwer fixed point theorem (Schauder
theorem if X is infinite dimensional) gives a point x € D such that x = F(x).
Under the assumption that F is differentiable, we give a simple condition
which guarantees that the fixed point x is unique. The proof is an application
of degree theory. We phrase the argument for the infinite dimensional case;
the reader who is interested only in the finite dimensional case may omit the
compactness hypothesis.

In the last section, the result is applied to a nonlinear boundary value
problem arising in physiology.

2. Suppose that F : D — D is compact and continuously Fréchet differen-
tiable in D. Then [4, Lemma 4.1] F'(x) is a compact linear operator on X for
each x € D. Our uniqueness result is

THEOREM. Let F: D — D be a compact continuous map which is continu-
ously Frechet differentiable on D. Suppose that (a) for each x € D, 1 is not an
eigenvalue of F'(x), and (b) for each x €9D, x # F(x). Then F has a unique
fixed point.

In order to prove the Theorem we require a lemma. For the Lemma, recall
that for any compact linear operator A the spectrum, o(A4), of 4 consists of a
countable number of points having 0 as the only possible limit point. Each
nonzero A € o(A4) is an eigenvalue of 4. For such a A, the null space of
(A — M)¥ is, for all k sufficiently large, independent of k. The dimension of
this null space is called the algebraic multiplicity of the eigenvalue A.

LEMMA. Let A be a compact linear operator on a real Banach space X.
Suppose 1 & o(A), and let B(A) denote the sum of the algebraic multiplicities of
all X € o(A) with X real and \ > 1. Then there is an € > 0 such that if B is a
compact linear operator on X and ||[A — B|| < e, then (— 1)) = (—1)F®),

PROOF OF LEMMA. Let B be a compact operator with |4 — B|| < & where
e will be determined in the course of the proof. Letting ¢ < 1, we see that
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IB]]| < M =||4]| + 1. Let Q be an open rectangle in the A plane with two
sides on Re A = 1 and Re A = M, and the other two sides on Im A = *a.
Let T denote the boundary of Q. We pick a > 0 so small that 6(4) N QO
consists only of real eigenvalues. Then I' N o(4) = @. For & sufficiently
small, we have ' N a(B) = @ [2, p. 213]. Let R,(A\) = (\I — A)™! be the
resolvant operator of A4, and set

P, =fr(>\1 — A)"'dA.

Then P, is a projection whose range is the union of the eigenspaces of A4
corresponding to the eigenvalues A € Q N o(A4) [2, p. 178]. Thus, setting
d(P,) = the dimension of the range of P,, we find that d(P,) is the sum of
the algebraic multiplicities of the eigenvalues A € 6(4) N Q. Defining Py in a
similar way, we have a similar result for d(Pp). For ¢ sufficiently small, we
have ||P, — Pg|| < 1, so d(P,) = d(Ppg) [2, p. 33]. Since 6(4) N Q consists
only of real eigenvalues, and since A € o(4) satisfies [\| < M, we have
d(P,) = B(A). If A € o(B) is complex, then X €(B), and A and X have the
same algebraic multiplicity. Hence d(Pg) = B(B) + even number. Combin-
ing these facts, we find that 8(4) and B(B) have the same parity, which
proves the lemma.

ProOF OF THEOREM. We first show that F has a finite number of fixed
points. For supposing otherwise, let x* = F(x*), k=1,2,..., be a
sequence of fixed points. Since F is compact we may, after picking a
subsequence, suppose that x* » x € D, F(x) = x. Hence x € D. By the
spectral condition, / — F’(x) has a bounded inverse, so from the inverse
function theorem [5, Theorem 1.20], 1 - F(x) is (1-1) in a neighborhood of x,
contradicting (I — F)(x’) = 0. Let x' , x denote the fixed points of F.
Let U; be a neighborhood of x/ euch that the closed sets U are pairwise
dls_]omt and U, C D. Let K = D\ (Utu, i}, so K is a closed subset of D
which does not contain a fixed point of F. Then the quantities

deg(0,/ — F,D) and deg(0,7 — F, Uj)

are well defined, and from the excision and additive properties of the degree
[5, Proposition 3.37], we have

deg(0,7 — F, D) = deg(0, — F, D\ K) = X deg(0, I — F, U)).
J
Without loss of generality we may suppose 0 € D. Then H(x, ¢) = x —
tF(x), 0 < t < 1, defines a homotopy of F with the identity function /. Since
0O€E D, H(x,t) # 0 for x €9D, for otherwise x = tF(x) + (1 — 1)0 € D,

which is a contradiction. Hence deg(0, I — ¢F, D) is defined, so using this
homotopy,

deg(0,/ — F, D) =deg(0,1,D) = 1.
From [4, Theorem 4.7],
deg(I — F,0,U;) = (—1)#%

where, in the notation of the Lemma, B(x) = B(F’'(x)). Since F'(x) is
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continuous, we see from the Lemma that the parity of B(x) is constant for
x € D. Hence 1 = =N, so N = 1 and the fixed point is unique.

REMARKS. (1) The same argument gives a uniqueness condition for the
fixed point theorems of Altman and Rothe [5, Chapter 3]. (2) We thank Dr.
John Osborn for help in proving the Lemma.

3. To illustrate our result, we consider the nonlinear boundary value

problem

| - DC” + (vC) = f(x), 0<x <1,
M C’'(0) =0, C(l)y=a>0,

@) v =—-J(x,C), 0v(0) =

This system of equations was used by Diamond and Bossert [1] to model salt
and water transport in a closed-ended tube, such as a sweat gland. The
diffusion coefficient D > 0, the function J(x, C) represents an osmotic
transport of water out of the tube, and the function f(x) represents a source
of salt into the tube. We assume that these functions are sufficiently differen-
tiable, and that

3) flx)20, Jo(x,C)<0,

where the subscript C denotes the partial derivative.

We write (1), (2) as a fixed point problem as follows. Let C,(x) be a
continuous function, and with C = C,, let v(x) be the solution of (2). Then
with v(x) given, there is a unique solution C = C, of (1). To see this, we
integrate (1) to obtain

= DCi(x) + 0(x)C (x) = fi(x) = [ "1 dt.

Letting v, denote an indefinite integral of v, we may then solve this equation
to get

Cy(x)=a exp{—-D"[o,(l) - Ul(x)]}

+D_‘j;]f,(t)exp{—D_'[v,(t) ~ v (x)]} a

We have thus defined a map F(C,) = C, on the Banach space X of
continuous functions on [0, 1].

The problem of solving the system (1), (2) is equivalent to the problem of
finding a fixed point of F. From (4) and (3) we see that Cy(x) > 0. If
Cy(x) > 0, we have from (3), v(x) > w(x), where w(x) = —[gJ (¢, 0) dt.
Hence for t > x, v,(f) — v,(x) > b(¢ — x), where b is independent of C,(x).
Using this in (4), we find that there is a constant K such that, for any
Ci(x) > 0, Cy(x) < K. If we let D C X denote the convex set defined by the
inequalities 0 < C(x) < K, we have proved that F(D) C D. It is easy to see,
using (4), that F is continuous, compact, and in fact continuously Fréchet
differentiable. Thus from the Schauder fixed point theorem, there is a fixed
point C = F(C), and hence a solution v(x), C(x), of (1), (2). To show that
there is a unique fixed point, we must calculate the derivative of F. Setting
C, = F(C), C, = F'(C))C,, it may be verified that C,, C2 satisfy the linear
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problem
- DCy + (8C,) + (v6,) =0,  C40) = C,(1) =0,
&+ Jo(x,C)C, =0, $(0)=0.
To apply our Theorem, we suppose C, € D. We must verify that 1 &
o(F'(C)); that is, that 1 is not an eigenvalue of F'(C)). Supposing the

contrary, let C be an eigenfunction of F'(C,) with eigenvalue 1. Then
C, = C, and hence there is a nontrivial solution 6(x), C(x), of the problem

(%) — DC" + (8C,) + (vC) = g,(x),
) & + Je(x, C,)C = gy(x),
(7 C'(0)= C(1) = 8(0) =0,

with g,(x) = 0, gy(x) = 0. It may be verified that (5)«(7) defines a closed,
densely defined operator on (6, C) € Ly(0, 1) X L,(0, 1), that the resolvent
operator is compact, and that the adjoint operator is given by the solution of
the problem

®) — ¢ = G = hy(x),
) = DY’ = oY + Jop = hy(x),
(10) ¥'(0) = ¢(1) = ¢(1) = 0.

Using the Fredholm alternative and the compactness of the resolvent opera-
tor associated with the problem (5)—(7), we conclude that there are functions
@(x), ¥(x), not identically zero, which satisfy (8)—(11) with h,(x) = 0, h,(x)
= 0. We must have y’(1) # 0, since otherwise, by the uniqueness of the
solution of the terminal value problem associated with (8), (9), we would have
¢ =0,y =0. Let X < 1 be the largest zero of y’, and suppose that y'(x) > 0
in (%, 1). Since C, = F(C,) € D, we have C,(x) > 0 in [0, 1]. Hence from
(8), X is the largest zero of ¢’, and ¢'(x) < 0 in (X, 1). Hence ¢"(X) > O,
@(X) > 0. Using (3), we see that the left side of (9)is < 0 at x = X. Thisis a
contradiction and proves that 1 is not an eigenvalue of F’(C,). Hence by our
Theorem, there is a unique fixed point of F, and a unique solution v(x), C(x)
of (1), (2) with C(x) > 0.

REMARK. In [3] there is given a more detailed study of osmotic flow in a
tube.
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