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Abstract. A compact Hausdorff pseudo-topology is introduced on every

closed convex bounded subset of a uniformly convex Banach space and is

used to prove a previous theorem of the author.

In [7], we used a transfinite induction method which depends on the

structure of the real line to prove the following fixed point theorem for

multivalued nonexpansive mappings:

Theorem 1. Let K be a closed convex bounded nonempty subset of a

uniformly convex Banach space and let T: K^íi(K) be a nonexpansive

mapping, where G(K) denotes the family of nonempty compact (not necessarily

convex) subsets of K, equipped with the Hausdorff metric. Then T has a fixed

point, i.e. there exists x G K such that x E Tx.

The properties of real numbers we used are the order property and the

separability, or more explicitly, that a decreasing nonnegative transfinite

sequence indexed by ordinals less than the uncountable ordinal Q, must be

eventually constant.

Recently, Caristi and Kirk [1], [2], [5] have proven the following theorem

and have given several interesting applications:

Theorem 2 [1], [2], Let X be a complete metric space, and let g: X —> X be a

self-map of X. Suppose that there exists a lower semicontinuous nonnegative

real-valued mapping £, such that for all x in X,

(0 d(x,g(x))<i(x)-^(g(x)).

Then g has a fixed point.

Chi Song Wong [8] has given a simple proof of the Caristi-Kirk theorem by

using the transfinite induction method mentioned above. On the other hand,

we define a pseudo-compact-Hausdorff-topology on any closed convex

bounded subset of a uniformly convex Banach space and give Theorem 1 a

simpler and more conceptual proof. It is our feeling that the existence of such

a compact Hausdorff pseudo-topology may well serve to explain the similar-

ity between uniform convexity and compactness in some aspects of geometric

fixed point theory.
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Let (X, d) be a metric space. A sequence [xn] in X is said to A-converge to

a point x G X, written xn -^>A x, if

(2) lim supd(xn, x) <\im supd(xn,y)
i i

for every subsequence {x„} of (x„) and every y E X. In the terminology of

asymptotic center (Edelstein [3], Lim [6]), this says that x is an asymptotic

center of every subsequence of {xn}. {xn} is said to A-converge strongly to x

if

(3) lim d(xn, x) < lim inf d(xn,y)   for every y E X.

This is equivalent to saying that all subsequences of {xn} have a common

asymptotic center (= x) and asymptotic radius (= lim d(xn, x)). In general, x

is not unique. That strong A-convergence implies A-convergence is obvious.

A-convergence has the following properties of which only the first two are

satisfied by strong A-convergence:

(i) if xn = x for every n, then xn —>A x;

(ii) if xn —>A x, then every subsequence of {x„} A-converges to x;

(iii) if {x„} does not A-converge to x, then there exists a subsequence of

which every subsequence does not A-converge to x.

Clearly these definitions and properties can be formulated for nets. A set X

equipped with a convergence class satisfying (i), (ii) and (iii) (or only (i) and

(ii)) will be called a pseudo-topological space and the convergence class will

be called a pseudo-topology on X. Note that we need only one additional

axiom to define topological spaces by convergence classes, see e.g., Kelley [4].

By using nets, concepts in topological spaces can be carried over to quasi-

topological spaces. Thus a quasi-topological space is compact if every net in it

has a convergent subnet and is Hausdorff if a net can converge to at most

one point. In what follows, (strong) A-topology will refer to the quasi-topol-

ogy with the convergence class given by sequences satisfying (2) ((3) respec-

tively). One may replace "sequences" by "nets" in this definition and will

obtain the same conclusions of Theorems 3 and 4 below.

A metric space is said to be A-complete if for every bounded sequence (or

net) {x„} in X there is an x E X such that

lim supd(xn, x) < lim supd(xn,y)
n n

for every y E X i.e. [xn] has an asymptotic center in X.

Theorem 3. Every bounded A-complete metric space X is strongly A-compact

(and hence A-compact), i.e. every sequence in X has a strongly A-convergent

subsequence.

Theorem 4. Every closed convex bounded subset of a uniformly convex

Banach space is compact Hausdorff under the (strong) A-topology.

Our proofs of Theorems 3 and 4 need the following set-theoretical result.

For two sequences {x„} and [yn] in a set, let us say {xn} is an essential
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subsequence of {yn} if there exists a positive integer N such that {xn}n>N is a

subsequence of {y„}.

Proposition 1. Let X be a set and let {xn} be a sequence in x. Let r be a

real-valued function whose domain is the set of subsequences of {xn}. Suppose

r(y) < r(z) whenever y is an essential subsequence of z. Then there is a

subsequence w of {xn} such that r(z) = r(w) for every subsequence z of w.

Proof. Denote by 'S the family of subsequences of {xn}. Define an

ordering < on V? as follows:

For x, y E S, we put x < y if x is an essential subsequence of y and

a-(jc) < r(y). Then we say x < y if x < y or x is identically equal to>>.

It is easy to check that < is a reflexive, antisymmetric and transitive

relation. Let 6 be a chain in ÇF. Let r = inf{r(x): x E t1}. If there is an

x E Q such that r(x) = r, then x is a lower bound for t\ Therefore we

assume that such x does not exist. Let xn be a sequence in G such that r(xn)

strictly decreases to r. Since 6 is a chain, we must have xx > x2 > . . . . By

using the diagonal process, dropping a finite number of terms in each

sequence Xn if necessary, we obtain a sequence y which is an essential

subsequence of xn for every ai. Then, by assumption, r(y) < r(xn) for every ai

and, hence, r(y) < r(x) for every x E ¿. Since each x E G is an essential

subsequence of xn for some ai, we conclude that y is a lower bound for (?.

By Zorn's lemma, 'S has a minimal element z. Let ivbea subsequence of z.

Then r(w) < r(z). If r(w) < r(z), then w < z and by the minimality and

antisymmetry we must have w — z which implies r(w) = r(z), a contradic-

tion. Hence r(w) = r(z).   Q.E.D.

Proof of Theorem 3. Let {xn} be a sequence in X. For every subsequence

K). let

r({xn,}) = inf^lim sup d(xn,y): y e *).

By Proposition 1 {xn} contains a subsequence which we still denote by

{xn} such that

for every subsequence  {xn) of {xn}. By A-completeness, there exists an

x E X such that

hmsuod(xn, x) = r({xj).

For every subsequence {xn) of {xn}, we have

lim sup d(xn, x) < lim sup d(xn, x)

=  A{Xn})  =  r({Xnf})   <   lim SUP ¿(-V *);

thus

lim sup ¿Cv*) = >•({**})■
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This shows that all subsequences {x } of {xn} have a same asymptotic center

x and a same asymptotic radius r.    Q.E.D.

Proof of Theorem 4. This follows from Theorem 3 and the uniqueness of

asymptotic center as proved by Edelstein [3].    Q.E.D.

Let us now give

Proof of Theorem 1. By a standard argument, there exist sequences {xn}

and {yn} such that yn E Txn and ||x„ - yn\\ -> 0. By Theorem 4, {xn} has a

A-convergent subsequence which we still denote by {x„}. Let x be its A-limit.

We assert that x G Tx. For each n, choose/>„ G Tx such \\pn - yn\\ < ||x —

xj|. Since Tx is compact, there exists a convergent subsequence {/»„} of {pn}

such that/» —»/> for some/» G Tx. It can be easily shown, by using \\xn — yn\\

-» 0, ||/»„ - _yj| < ||jc - xn|| and x„ —>A x, that x —>A/». Since also x„ —>A x,

we must have x = p E Tx by the uniqueness of A-limit.    Q.E.D.

Remark. I am indebted to the referee for informing me that K. Goebel has

discovered independently a similar proof of Theorem 1 in a paper published

in Ann. Univ. Mariae Curie-Skfodowska.
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