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ON THE SPACE OF FUNCTIONS

WITHOUT DISCONTINUITIES OF THE SECOND KIND

L. §. GRINBLAT

Abstract. In this note we prove a general theorem which implies the

famous proposition that the space of functions without discontinuities of Üie

second kind, equipped with the Skorohod metric, is homeomorphic to a

complete metric space.

1. Let D[0, 1] be the set of all functions x(t), 0 < t < I, without discon-

tinuities of the second kind. We assume that the function x(r) G D[0, 1] is

continuous from the right at all points 0 < t < 1 and *(r) is continuous from

the left at 1. Denote by A the set of all continuous and strictly increasing

functions \(f), 0 < f < 1, such that A(0) = 0, X(l) = 1. We shall consider

7J>[0, 1] with the Skorohod metric, namely,

sup|x,(X(f)) - x2(/)| + sup|A(/) - /| .
t t

The space D [0, 1] is separable, but it is not a complete space. A space is said

to be topologically complete if it is homeomorphic to a complete metric

space. Several proofs of the topological completeness of £>[0, 1] have been

given (see, for example, [3, 3.14]). These proofs utilize the existence for

D [0, 1] of a family of functional Ac(x) (x G D[0, 1], c > 0) which can be

used to prove an analog to the Arzela-Ascoli Theorem to characterize the

compact sets in D [0, 1]. We shall prove that for an arbitrary separable metric

space the existence of such an "Arzela-Ascoli type" family of functions is

both necessary and sufficient to insure topological completeness.

2. Theorem. The separable metric space Z is topologically complete if and

only if there exists a family Gciz) (c > 0) of bounded continuous functions

defined on Z such that:

(1) Gciz) > 0;

(2) for a fixed z we have limc_0Gc(z) = 0;

(3)GCi(z)< GC2(z)ifcx < c2,

(4) the closed set K c Z is compact if and only if for any e > 0 there exists

8 > 0 such that for each z E K and each c < 8 we have Gc(z) < e.

Proof. Necessity. The space Z is homeomorphic to the separable complete

metric space Z'. Denote by C[0, 1] the space of continuous functions y it),
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defined on [0, 1], with the usual metric p(yx,y2) = max|7,(/) - y2(t)\. The

Banach-Mazur Theorem asserts that a separable metric space is isometric to a

subset of a space C[0, 1] (see [2, §65]). Let Z' be isometric to Z"c C[0, 1].

Since Z' is a complete space, it follows that Z" is a closed subset of C[0, 1].

Consider for each c > 0 the following functional on Z " :

Gc(.y) = minj     sup    \y(t') - y(t")\, 1 J + minjc • max|.y(i)|, l}.
Ml'-/"|<c '

The functionals Gc(y) may be considered as functions on Z: Gc(z). Obviously

conditions (l)-(3) are satisfied for Gc(z). Condition (4) is valid, according to

the Arzela-Ascoli Theorem.

Sufficiency. Let Gc(z) be a family of bounded continuous functions defined

on the separable metric space Z, which satisfies conditions (l)-(4). By virtue

of Urysohn's Theorem (see [2, §58]) the space Z is homeomorphic to a certain

subset of Hubert space H. For every element z G Z let <&(z) denote the

following element of H: (fx(z), 2-%(z), ..., 2-" + l/„(z), ...), where /„ is

defined in [2, p. 128]. The set <J>(Z) is homeomorphic to Z. Let C7c'(z) =

Gc(z)/(AC + 1), where Ac = sup,Gc(z).

For every element z E Z let $'(z) denote the following element of H:

(/, (z), G'x(z), 2-%(z), 2-'G;/2(z), . . . , 2-"+1/„(z), 2-"+1G1'/„(z), . . . ).

The set <&'(Z) is homeomorphic to Z. The set Q = <&'(Z) is the metric

compactification of Z such that all functions Gx,n(z) (ai a positive integer)

can be continuously extended on Q. Consider the closed subsets in Q:

Fm,„ = {qEQ: Gx/n(q) > 1/aai). Set Fm = n" ^ and F„ = VJx=xFm.

Then Fa = Q \ Z. Indeed, it is obvious that Fa c Q \ Z. Suppose that there

exists a point q0 E (Q \ Z) \ Fa. Consider the sequence of points Zx = {zp}

C Z, which converges to q0 in the metric of Q. The set Zx is closed in Z. For

any aai there exists ai, such that G, ,n (q0) < l/m. Consider the open set in Q:

U = {q E Q: G1/n (q) < l/m}. There exists a positive integer F such that

for p > P we have zp E U. There exists also a positive integer ai2 > ai , such

that Gx/ni(zp) < 1/aai for/> < F. Hence, Gx/n(zp) < 1/aai for zp G Zx. This

means that the sequence Zx is compact, which is a contradiction. Thus

Fa = Q \ Z. From Alexandreff's Theorem (see [1, 11.2]) it follows that Z is

topologically complete.    Q.E.D.

3. Consider the space D[0, I]. The functionals Ac(x) defined in [4, VI, §5]

can be altered to yield a family of continuous bounded functionals gc(x)

satisfying the conditions of the Theorem by setting

gc(x) = min[F1/c(x), 1] + min[c- sup|x(l)|, l],

where Fa is as defined in [4, p. 430]. This means that D[0, 1] is topologically

complete.

The author wishes to thank the referee for his help.
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