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CONTINUOUS ACTIONS OF COMPACT LIE

GROUPS ON RIEMANNIAN MANIFOLDS

DAVID HOFFMAN AND L. N. MANN1

Abstract. M. H. A. Newman proved that if M is a connected topological

manifold with metric d, there exists a number e > 0, depending only upon

M and d, such that every compact Lie group acting effectively on M has at

least one orbit of diameter at least e. In this paper the authors consider the

case where M is a Riemannian manifold and d is the distance function on M

arising from the Riemannian metric. They obtain estimates for e in terms of

convexity and curvature invariants of M.

1. Introduction. In 1931 M. H. A. Newman proved the following result.

Theorem (Newman [8]). If M is a connected topological manifold with metric

d, there exists a number e = e(M,d) > 0, depending only upon M and d, such

that every compact Lie group G acting effectively on M has at least one orbit of

diameter at least e.

Recently several investigators, including ourselves [4], [6], [7], have studied

compact groups of isometries on a Riemannian manifold M and have obtained

estimates for e in terms of convexity and curvature invariants of M. In this

paper we consider continuous actions of compact Lie groups on a Riemannian

manifold M and we obtain results which compare quite favorably with the

results for isometric actions. Moreover, our arguments are surprisingly simple.

Specifically, we have obtained the following results: We call a subset S of M

convex if for every pair of points in S there exists a unique distance measuring

geodesic in S joining them. For x E M, the radius of convexity of M at x,

which we denote by rx, is defined as the supremum of the radii of all convex

embedded open balls centered at x.

Theorem 1. Let M be a Riemannian manifold with nonpositive sectional

curvature. Let

r =  sup rx
xeM

and suppose r is any number, 0 < r < r. If G is any compact Lie group acting
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continuously and effectively on M, then there exists at least one orbit of diameter

at least r/2. In particular if r = +00, there exist orbits of arbitrarily large

diameters.

The technique of proof depends upon the original approach of Newman as

presented in a paper by Andreas Dress [2] together with the well-known fact

that the exponential map locally stretches distances for manifolds of nonposi-

tive curvature. For manifolds of bounded curvature K < b , we obtain an

analogous result by using a technique similar to that of Hoffman [4] which

compares distances locally on M with distances on a space form of constant

positive curvature b .

Theorem 2. Let M be a Riemannian manifold with curvature bounded above

by a positive constant b . Suppose r is any number, 0 < r < min {71/2 • b~ ,?}.

If G is any compact Lie group acting continuously and effectively on M, then there

exists at least one orbit of diameter at least 2r/{tt + 2).

As for a best possible type result, we have the following candidate.

Theorem 3. Let G be a compact Lie group acting continuously and effectively

on a compact orientable Riemannian manifold M. Then there exists at least one

orbit which is not contained in any open convex subset of M.

In [9], P. A. Smith gave a generalization of Newman's Theorem to

cohomology manifolds. In this paper Smith claims [9, p. 448] that if a compact

Lie group acts continuously and effectively on an Ai-sphere 5" (with the

standard metric) there exists at least one orbit which is not contained in any

open hemisphere. Theorem 3 is a natural generalization of Smith's claim. The

existence of such a result was suggested by the techniques of G. Bredon in [1,

111.9] where he gives a proof of Smith's version of the Newman Theorem. The

assumptions of compactness and orientability appear to be needed only for

technical reasons.

2. Proof of Theorems 1 and 2. We will use the following two results:

A. Lemma (A. Dress [2]). Let U be an open, relatively compact and connected

subset of R". If Z acts continuously, effectively and invariantly on U, then

D = Max{Min{||jt-.y|||jA G dV}\x E U}

< C = (Max ||jc - tjc|| |t G Zp,x G 917}.

Here \\x — y\\ is the euclidean norm in R".

B. Proposition. Suppose K < b {respectively K < 0) oai a Riemannian

manifold M with distance function d. Let Br{z) = {y\d{y,z) < r} be a convex

embedded ball centered at z in M. Suppose further that r < ttA" /2 {respectively

0 < r < 00 when K < 0). For any x, y E Br(z), if x = expj x and y

= expj y, then d(x,y) > {2/ir)\\x — y\\ {respectively d{x,y) > ||jc - y\\ when

K < 0). Here \\x — y\\ is the euclidean norm in the tangent space Mz.
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Lemma A appears as Lemma 3 in [2], Proposition B, for the case K < 0, is

a well-known fact. The proof of Proposition B for Riemannian manifolds with

curvature bounded above by a positive constant will be presented in the next

section.

We prove Theorems 1 and 2 simultaneously. Without loss of generality, we

may assume G = Z . Fix any z E M and let rz = the radius of convexity at

z. For any r > 0 satisfying

U if7C<0,

\Min{rz,77/2-6-1}       if K < b2,

and any a, 0 < a < 1, suppose that

(H) d(x,Tx) < (1 - a)r   for all x E M, all t G Zp.

Define U = UTeZ rBar(z). By construction, U is Z -invariant. Further-

more, by (H), Bjz) CUE B¿z).

Now lift the action of Z on U to an action of Z on the closed set exp2 U,

i.e. let t G Z act on expj1 U by expj"1 ° t ° expz. For convenience, we will

let [/ = expj1 U. Clearly (7 is Z invariant and

{x E Mz\ ||*|| < ar} = expj'Ti^z) C t7

C expj1 7Jf(z) = {x E Mz\\\x\\ <r}.

The left-hand inclusion implies

D = Max{Min{||i - j5|||j/ g 3(7 }|i G Uj > ar.

(Simply let x = 0.) Since 7L(z) is a convex, embedded ball with r < vt/2 ■ b~

when 7C < ¿>2 (r < oo when 7Í < 0), we may apply Proposition B, which,

together with (H) implies

C = Max {||i - Ti|| |i G 31/,t G Z}<{ ,„       ., „^j

But, by Lemma A, 7) < C. This implies

)vt/-/2       if K < TA

r(l-a)

1(1 -a)
. -a)r if AT < 0,

»W2       if A- < Z>2,

or

, r 1/2
a <<

^77/77

if a: < o,

+ 2        if K < b2.

Therefore, (H) is false for
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f 1/2 if K <  0,

" \ir/v + 2       if A-< ¿>2;

i.e. there exists an x E M whose orbit has diameter at least r/2 if K < 0;

2r/tt + 2 if K < A . This completes the proof of Theorems 1 and 2.

Remark. For Z2 actions, Lemma A may be strengthened to say that

2D < C (there is a misprint on p. 206 of [2]). Moreover if G is not a finite

group of odd order, it must contain an involution. Using these facts in the

above argument shows that:

Corollary. Let M be a Riemannian manifold with sectional curvature

K < b {respectively K < 0). Suppose r satisfies 0 < r < Min {77/2 • b~ ,f}

{respectively 0 < r < f when K < 0). If G is a compact Lie group acting

continuously and effectively on M and if G is not a finite group of odd order, then

there exists at least one orbit of diameter at least 4r/it + 4 (respectively 2r/3 when

K < 0).

3. A distance preserving property of the exponential map. In this section we

outline a proof of Proposition B in the case where the curvature of M is

bounded above by a positive constant b .

Let z G M and choose any r, 0 < r < Min (rz,tr/2 ■ b~ ). For any x, y

E Br(z), we must show d(x,y) > (2/tt)||í - y\\.

We proceed as follows. Let S"(b~ ) be the Ai-sphere of constant curvature

A2, and fixp E Sn(b~:).

The choice of r ensures that Br(z) and Br(p), the geodesic ball of radius r

centered at p G S"(b~]), are both convex. Identify M2 with S"(b~]) by a

linear isometry i. We have the bijection

Br(z) ^SlU M2 -¿» S"(b-')p ^ Br{p).

Here, exp is the exponential map of S"{b~ ) restricted to the tangent space

at p. Let r/ = exp   ° i ° expj1.

Since x, y G Br{z), neither x nor y is conjugate to 2 along any geodesic in

Br{z). Similarly, r¡x, t\y E Br{p) are not conjugate along any geodesic in

Br{p). Therefore we may apply the Rauch Comparison Theorem [5, p. 76] to

conclude:

If y is a length-measuring geodesic connecting x to y in Br(z),

(1) d{-qx,r¡y) < Length (t) ° y) < Length (y) = d(x,y).

Here d is the distance function in S"(b~ ). Now suppose 8 is a length-

measuring geodesic joining -qx to r¡y in Br(p) C S"(b~ ). The curve éxp^1 ° 8

connects êxp" 17x to exp" 17y, so

||expp \x - exp"1 Tj_y!| < Length (éxp^1 ° 8).

Here  length  is  measured  in  S"(b~])p.  Since  i is  an  isometry  (and  ix
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= exp^'i,*, etc.),

(2) \\x-y\\ < Length^;1 o S).

We now wish to compare the length of éxp"1 ° S with the length of

S C S"ib~]). A straightforward computation, using polar coordinates to

express éxp  and the arc-length formula, yields

Hsinbr)/br) Length (exp-1 ° ô) < Length8.

Since r < 7r/2 • b~] and S measures length,

(3) 2/vt • Length (exp~'<5) < dir¡x,i]y).

Combining (1), (2) and (3),

2\\x - yW/tt < dix,y),

which is the desired inequality.

4. Proof of Theorem 3. In [1, pp. 154-156] Bredon proves a version of

Newman's Theorem due to P. A. Smith. As a preliminary he gives a result,

Theorem 9.3 of [1], where he proves:

If M is a compact orientable manifold and % is any open covering of M

such that 77"(ä:(%),Z) -> 77"(M,Z) is onto, then there does not exist a

continuous effective action of a compact Lie group on M such that each orbit

is contained in some member of %.

Here, H(K(a&),Z) is the integral cohomology of K(GI\), the nerve of the

covering %, and H(M,Z) is the integral Cech cohomology. The map is the

natural induced map.

So now let %, be the covering consisting of all open, convex sets of the

Riemannian manifold M.

Since the intersection of convex sets is a convex set and convex sets are

contractible, 77?(|a|,Z) = 0 for all a G K(¿ll), q > 1. By Leray's Theorem

[3, p. 44], the induced map Hq(K(%,Z) -^ Hq(M,Z) is an isomorphism for

all q > 0. In particular, Hn(K(%),Z) -» H"(M,Z) is onto. Thus, Bredon's

result is applicable to the covering by convex sets, proving Theorem 3.
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