ABSTRACT ω -LIMIT SETS, CHAIN RECURRENT SETS, AND BASIC SETS FOR FLOWS

JOHN E. FRANKE AND JAMES F. SELGRADE

ABSTRACT. An abstract ω -limit set for a flow is an invariant set which is conjugate to the ω -limit set of a point. This paper shows that an abstract ω -limit set is precisely a connected, chain recurrent set. In fact, an abstract ω -limit set which is a subset of a hyperbolic invariant set is the ω -limit set of a nearby heteroclinic point. This leads to the result that a basic set is a hyperbolic, compact, invariant set which is chain recurrent, connected, and has local product structure.

1. Introduction. R. Bowen [1] defines a homeomorphism on a compact metric space to be an abstract ω -limit set if it is conjugate to the ω -limit set of some point. He shows that if f is an Axiom A diffeomorphism and if f restricted to Λ , a subset of the nonwandering set Ω , is an abstract ω -limit set then $\Lambda = \omega(x)$ for some $x \in \Omega$. In this paper we investigate related questions for flows.

DEFINITION. A flow f on Λ is an abstract ω -limit set if there is a flow g on X a compact metric space and an $x \in X$ so that $g|_{\omega(x)}$ is topologically conjugate to f.

C. Conley [2] defines a weak form of recurrence, called chain recurrence, for a flow f on a compact metric space M. The set of points with this recurrence property is called the chain recurrent set $\Re(f)$. If $\Re(f) = M$ then f is said to be chain recurrent.

THEOREM A. A flow f on Λ is an abstract ω -limit set if and only if Λ is connected and f is chain recurrent.

THEOREM B. Let f be a smooth flow on M and let Λ be a hyperbolic closed invariant subset of M. If $f|_{\Lambda}$ is an abstract ω -limit set and if $\alpha > 0$, then there is an $x \in W_{\alpha}^{u}(\Lambda) \cap W_{\alpha}^{s}(\Lambda)$ such that $\omega(x) = \alpha(x) = \Lambda$. $(W_{\alpha}^{s}(\Lambda))$ and $W_{\alpha}^{u}(\Lambda)$ denote local stable and unstable manifolds of Λ .)

If Λ has local product structure (i.e., $W_{\alpha}^{s}(\Lambda) \cap W_{\alpha}^{u}(\Lambda) = \Lambda$) in addition to the hypothesis in Theorem B, then this x is a point in Λ and its orbit is dense in Λ . In the case that f is an Axiom A flow, Ω has local product structure [5] so Theorem B gives the flow version of Bowen's result.

S. Smale [6] defines a basic set for a flow f on M to be a set Λ such that

Received by the editors January 19, 1976.

AMS (MOS) subject classifications (1970). Primary 58F99; Secondary 58F15.

Key words and phrases. Flows, abstract ω-limit set, chain recurrent, invariant set, hyperbolic, Axiom A, basic set.

Copyright © 1977, American Mathematical Society

- (a) Λ is compact and invariant,
- (b) Λ is hyperbolic,
- (c) periodic orbits are dense in Λ ,
- (d) Λ has a transitive orbit,
- (e) there is an open neighborhood U of Λ such that $\bigcap_{t \in R} f_t(U) = \Lambda$, U is called a fundamental neighborhood.

We are able to weaken several of Smale's conditions and still obtain an equivalent definition of a basic set.

THEOREM C. Λ is a basic set for a flow f if and only if

- (a') Λ is compact and invariant,
- (b') Λ is hyperbolic,
- (c') $f|_{\Lambda}$ is chain recurrent,
- (d') Λ is connected,
- (e') Λ has local product structure.

Theorem B with local product structure gives (d); Proposition 2.3 in §2 with local product structure gives (c); and (e) follows from

PROPOSITION D. If Λ is a hyperbolic closed invariant set with local product structure then it has a fundamental neighborhood.

2. Background and notation. Let f be a flow on a compact metric space (M,d). For subsets Λ of M and J of R, define $\Lambda \cdot J = f(\Lambda \times J)$. Given ε , T > 0, an infinite (ε, T) -chain is a pair of doubly infinite sequences

$$\{\cdots, x_{-2}, x_{-1}, x_0, x_1, x_2, \ldots; \ldots, t_{-2}, t_{-1}, t_0, t_1, t_2, \ldots\}$$

such that $t_i \ge T$ and $d(x_i \cdot t_i, x_{i+1}) < \varepsilon$ for all i. Let $x_0 * t$ denote the point on this chain t units from x_0 , i.e., if $t \ge 0$ then

$$x_0 * t = x_i \cdot \left(t - \sum_{n=0}^{i-1} t_n\right)$$

where $\sum_{n=0}^{i-1} t_n \leqslant t < \sum_{n=0}^{i} t_n$ and if t < 0 then

$$x_0 * t = x_i \cdot \left(t + \sum_{n=1}^{-1} t_n\right)$$

where $-\sum_{n=i}^{-1} t_n \leqslant t < -\sum_{n=i-1}^{-1} t_n$. If $a, b \in R$, define

$$x_0 * [a,b] = \bigcup_{t \in [a,b]} \{x_0 * t\}.$$

Given an infinite (ε, T) -chain $x_0 * R$ define its ω -limit set by

$$\omega(x_0 * R) = \bigcap_{t>0} \operatorname{Cl}(x_0 * [t, \infty)).$$

Given $x, y \in M$ and ε , T > 0, an (ε, T) -chain from x to y is a finite sequence of points and times, as above, with $x_0 = x$ and $x_n = y$. Let $\mathfrak{P}(f) \equiv \{(x,y) \in M \times M | \text{ for any } \varepsilon, T > 0 \text{ there is an } (\varepsilon, T)\text{-chain from } x \text{ to } y\}$; \mathfrak{P} is a closed subset of $M \times M$ and is a transitive relation. The *chain recurrent set* $\mathfrak{R}(f)$ is $\{x \in M | (x,x) \in \mathfrak{P}(f)\}$. \mathfrak{R} is a closed invariant set containing Ω . For

 $\Lambda \subset M$ we say $f|_{\Lambda}$ is chain recurrent if Λ is a compact invariant set and $\Re(f|_{\Lambda}) = \Lambda$. $\Re(f)$ induces an equivalence relation on $\Re(f)$. For $x, y \in \Re(f)$, x is equivalent to y (written $x \sim y$) if $(x,y) \in \Re(f)$ and $(y,x) \in \Re(f)$. Conley [2] shows

PROPOSITION 2.1. The equivalence classes under \sim are precisely the connected components of $\Re(f)$. And if Λ is a component of $\Re(f)$ then $\Re(f|_{\Lambda}) = \Lambda \times \Lambda$, i.e., the (ε, T) -chains between points of Λ can be chosen to lie in Λ .

Consequently $\Re(f|_{\Re}) = \Re(f)$, i.e., $f|_{\Re}$ is chain recurrent. Also, the components of \Re are the maximal connected subsets of M such that f restricted is chain recurrent.

A closed invariant set $\Lambda \subset M$ is hyperbolic if the tangent flow Tf_t leaves invariant a continuous splitting $T_{\Lambda}M = E^s \oplus E^u \oplus E$ where, for some $\lambda \in (0,1)$ and some Riemannian metric,

- (i) if $v \in E^u$ and t > 0 then $|Tf_t(v)| > \lambda^{-t}|v|$,
- (ii) if $v \in E^s$ and t > 0 then $|T_t(v)| < \lambda^t |v|$,
- (iii) E is the span of the vectorfield of f.

Stable manifold theory for a hyperbolic invariant set asserts, for each $x \in \Lambda$, the existence of α -disks $W_{\alpha}^{s}(x)$ and $W_{\alpha}^{u}(x)$ which are tangent to E_{x}^{s} and E_{x}^{u} . These families of disks are invariant; and there is a $\lambda \in (0,1)$ such that

$$W_{\alpha}^{s}(x) = \{ y \in M | d(x \cdot t, y \cdot t) < \alpha \lambda^{t} \text{ for all } t > 0 \},$$

$$W_{\alpha}^{u}(x) = \{ y \in M | d(x \cdot t, y \cdot t) < \alpha \lambda^{-t} \text{ for all } t < 0 \}.$$

Let

$$W_{\alpha}^{s}(\Lambda) = \bigcup_{x \in \Lambda} W_{\alpha}^{s}(x)$$
 and $W_{\alpha}^{u}(\Lambda) = \bigcup_{x \in \Lambda} W_{\alpha}^{u}(x)$.

 Λ is said to have *local product structure* if there is an $\alpha > 0$ such that $W_{\alpha}^{u}(\Lambda) \cap W_{\alpha}^{s}(\Lambda) = \Lambda$.

With certain hyperbolicity assumptions it is possible to approximate infinite (ε, T) -chains with actual orbits. More precisely, an orbit $y \cdot R$ is said to δ -trace an infinite (ε, T) -chain $x_0 * R$ if there is an orientation preserving homeomorphism g of R fixing the origin such that $d(x_0 * t, y \cdot g(t)) < \delta$ for all $t \in R$. We call g a reparameterization of $g \cdot R$. In [3] we show

PROPOSITION 2.2. Let Λ be a hyperbolic closed invariant set. Given $\delta > 0$ and $\alpha > 0$ there is an $\varepsilon > 0$ so that each $(\varepsilon, 1)$ -chain in Λ can be δ -traced by some $x \in W_{\alpha}^{u}(\Lambda) \cap W_{\alpha}^{u}(\Lambda)$.

PROPOSITION 2.3. If Λ is a hyperbolic closed invariant set and $f|_{\Lambda}$ is chain recurrent, then Λ is contained in the closure of the set of periodic orbits of f.

PROPOSITION 2.4. If Λ is a hyperbolic closed invariant set then there exists $\delta > 0$ so that:

(1) If $x, y \in \Lambda$ and $[t_1, t_2]$ is an interval containing zero and g is a reparameterization of $y \cdot [t_1, t_2]$ with $d(x \cdot t, y \cdot g(t)) < \delta$ for all $t \in [t_1, t_2]$, then

$$|t-g(t)|<1.$$

- (2) For each $\beta > 0$ there is S > 0 such that, if $x, y \in \Lambda$ and g is a reparameterization of $y \cdot R$ with $d(x \cdot t, y \cdot g(t)) < \delta$ for all t belonging to an interval I where $I \cap g(I)$ contains [-S, S], then $d(x, y \cdot r) < \beta$ for an r with |r| < 1. Moreover, if $I \cap g(I) = R$ then $x = y \cdot r$.
- Part (2) of Proposition 2.4 establishes a type of flow expansiveness which says, roughly, that if two orbits are close enough for long enough time then segments of these orbits are much closer.

3. Abstract ω -limit sets are chain recurrent.

Theorem 3.1. Let f be a flow on a compact metric space Λ . Then the following three conditions are equivalent:

- (1) f on Λ is an abstract ω -limit set.
- (2) There is no proper open subset U of Λ with $U \neq \emptyset$ such that $(Cl\ U) \cdot T \subset U$ for some T > 0.
 - (3) Λ is connected and $f|_{\Lambda}$ is chain recurrent.

We will show $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$. The arguments are flow versions of Bowen's Theorem 1 [1] plus the following lemmas:

LEMMA 3.2. Let Λ be connected and $f|_{\Lambda}$ be chain recurrent. Then given $\varepsilon > 0$ there is an infinite $(\varepsilon, 1)$ -chain $x_0 * R$ such that $\omega(x_0 * R) = \alpha(x_0 * R) = \Lambda$. In addition, given any ε' , T' > 0 there is an S > 0 such that $x_0 * [S, \infty)$ and $x_0 * (-\infty, -S]$ are (ε', T') -chains.

PROOF. Given $\varepsilon > 0$, let $\{\varepsilon_i\}$ and $\{T_i\}$ be sequences with $\varepsilon_i < \varepsilon$ and $T_i > 1$ such that $\varepsilon_i \to 0$ and $T_i \to \infty$ as $i \to \infty$. For each positive integer i pick an ε_i -dense set of points in Λ and, by Proposition 2.1, construct a finite (ε_i, T_i) -chain connecting all these points. String all of these chains together to get an infinite $(\varepsilon, 1)$ -chain with the desired properties.

LEMMA 3.3. Let U be a nonempty, open, proper subset of Λ compact with $(Cl\ U) \cdot T \subset U$ for some T > 0. Then $U' = \bigcup_{t \geqslant 0} U \cdot t$ is a positively invariant, open, proper subset of Λ with $(Cl\ U') \cdot T \subset U'$.

PROOF. Clearly U' is open and positively invariant. $U' = \bigcup_{0 \le t \le T} U \cdot t$ since $(Cl\ U) \cdot T \subset U$; and $Cl\ U' = \bigcup_{0 \le t \le T} (Cl\ U) \cdot t$ since [0, T] is compact. Thus

$$(\operatorname{Cl} U') \cdot T = \left(\bigcup_{0 \leqslant t \leqslant T} (\operatorname{Cl} U) \cdot t\right) \cdot T$$

$$= \bigcup_{0 \leqslant t \leqslant T} ((\operatorname{Cl} U) \cdot T) \cdot t \subset \bigcup_{0 \leqslant t \leqslant T} U \cdot t = U'$$

To show U' is proper assume $U' = \Lambda$. Let $x_0 \in \Lambda - \operatorname{Cl} U \neq \emptyset$ and $x_i = x_0 \cdot (iT)$ for $i = -1, -2, \ldots$. Each $x_i \in \Lambda - \operatorname{Cl} U$ since $(\operatorname{Cl} U) \cdot T \subset U$. Since $x_i \in U' = \bigcup_{0 \le t \le T} U \cdot t$ there is a $y_i \in U$ such that $y_i \cdot t = x_i$ for some $0 \le t \le T$. Note that $y_i \cdot T \in U \cdot T$. Let $\alpha > 0$ be a lower bound for the time it takes points to flow from $(\operatorname{Cl} U) \cdot T$ to $\Lambda - U$. The amount of time the orbit from x_{-1} to x_0 spends in $U \cdot T$ is less than $T - 2\alpha$. Since the amount of time the orbit from x_{i+1} to x_{i+2} spends in $U \cdot T$, the amount of time the orbit from

 x_i to x_{i+1} spends in $U \cdot T$ decreases by at least 2α . Iterating this procedure shows that eventually there are no points of $U \cdot T$ between x_i and x_{i+1} , which is a contradiction. Thus U' is proper.

PROOF OF THEOREM 3.1. (1) \Rightarrow (2). Let g be a flow on X and h be the conjugacy between $g|_{\omega(x)}$ and $f|_{\Lambda}$. Suppose U is a nonempty, open, proper subset of Λ with $(\operatorname{Cl} U) \cdot T \subset U$. By Lemma 3.3, $U' = \bigcup_{t \geqslant 0} U \cdot t$ has the same properties as U plus being positively invariant. Let V = h(U'). V is a nonempty, open, proper subset of $\omega(x)$ which is positively invariant. Since $\operatorname{Cl}(V)$ is compact and $(\operatorname{Cl} U') \cdot T \subset U'$, there is a P > 0 such that $(\operatorname{Cl} V) \cdot P \subset V$. Again by Lemma 3.3, $V' = \bigcup_{t \geqslant 0} V \cdot t$ is a positively invariant, open, proper subset of $\omega(x)$ with $\operatorname{Cl} V' \cdot P \subset V'$. Hence $\operatorname{Cl} V' \neq \omega(x)$.

Let
$$y \in \omega(x) - \operatorname{Cl} V'$$
, $z \in V'$, $\alpha = d(y, \operatorname{Cl} V') > 0$, and

$$\beta = d(\omega(x) - \operatorname{Cl} V', \operatorname{Cl} (V' \cdot P)) > 0.$$

Let $\gamma > 0$ be such that if $d(p,q) < \gamma$ then $d(p \cdot t, q \cdot t) < \frac{1}{2} \min\{\alpha, \beta\}$ for all t with $0 \le t \le P$. Choose S > 0 such that $d(x \cdot [S, \infty), \omega(x)) < \gamma$. Since $z \in \omega(x)$ there is a time S' > S such that $d(x \cdot S', z) < \gamma$. Now $d(x \cdot (t + S'), z \cdot t) < \alpha/2$ implies $d(x \cdot (t + S'), y) > \alpha/2$ for $0 \le t \le P$. $d(x \cdot (P + S'), z \cdot P) < \beta/2$ and $z \cdot P \in V' \cdot P$,

$$d(x \cdot (P + S'), \omega(x) - V') > \beta/2 > \gamma$$
.

Thus there is a point z_1 in V' such that $d(x \cdot (P + S'), z_1) < \gamma$. Successively repeating the preceding argument for time intervals of length P shows that $d(x \cdot t, y) > \alpha/2$ for all t > S' which shows $y \notin \omega(x)$. This contradiction finishes $(1) \Rightarrow (2)$.

PROOF OF $(2) \Rightarrow (3)$. If Λ were not connected then the open-closed sets of a separation contradict (2). To show Λ is chain recurrent take ε , T > 0 and $x_0 \in \Lambda$. We will construct an (ε, T) -chain from x_0 to itself. Take a finite open $\varepsilon/2$ -cover of Λ . Let U_0 and U_1 be sets in this cover which contain x_0 and $x_0 \cdot T$, respectively. If $U_1 = U_0$ we are done. Since $\operatorname{Cl} U_1 \cdot T \subset U_1$, $U_1 \cdot T$ meets another set U_2 in the cover. $\operatorname{Cl} (U_1 \cup U_2) \cdot T \subset U_1 \cup U_2$ so $(U_1 \cup U_2) \cdot T$ meets another set U_3 in the cover. Continue this procedure until U_n is equal to U_0 . For each $i = 0, 1, \ldots, n-1$ there is a point x_i in $U_0 \cup \cdots \cup U_i$ such that $x_i \cdot T \in U_{i+1}$. So there is an (ε, T) -chain from x_i to any point in U_{i+1} . By induction one can chain from x_0 to any point in U_{i+1} ; and hence there is an (ε, T) -chain from x_0 to x_0 .

PROOF OF (3) \Rightarrow (1). Let $\{\cdots, x_{-1}, x_0, x_1, \ldots; \ldots, t_{-1}, t_0, t_1, \ldots\}$ be an infinite (ε, T) -chain with $\omega(x_0 * R) = \alpha(x_0 * R) = \Lambda$ as guaranteed in Lemma 3.2. Embed Λ in the Hilbert cube C and form the Cartesian product $C \times [0, 1]^2$. For each integer i, define

$$P_i = \begin{cases} x_i \cdot [0, t_i] \times (1/(i+1), 0) & \text{if } i \ge 0, \\ x_i \cdot [0, t_i] \times (1/i, 0) & \text{if } i < 0, \end{cases}$$

$$L_i = \begin{cases} \text{ the line segment connecting } (x_i \cdot t_i) \times \left(\frac{1}{i+1}, 0\right) \\ & \text{to } (x_{i+1}) \times \left(\frac{1}{i+2}, 0\right) \quad \text{if } i \geq 0, \end{cases}$$
 the line segment connecting $(x_i \cdot t_i) \times \left(\frac{1}{i}, 0\right) \\ & \text{to } (x_{i+1}) \times \left(\frac{1}{i+1}, 0\right) \quad \text{if } i < -1, \end{cases}$ an arc connecting $(x_{-1} \cdot t_{-1}) \times (-1, 0)$ to $(x_0) \times (1, 0)$ which has nonzero last coordinate (w-coordinate) except at its ends if $i = -1$.

Let $Y = (\Lambda, 0, 0) \cup \bigcup_{i=1}^{\infty} (P_i \cup L_i)$. We will define a flow on Y (see Figure 1) such that one point will have its α - and ω -limit sets equal to $(\Lambda, 0, 0)$ which shows that Λ is an abstract ω -limit set. Define g on $(\Lambda, 0, 0)$ by $g_t(x, 0, 0) = (f_t(x), 0, 0)$. On P_i let g be the flow induced by f. On L_i let g be the flow parameterized by arc length starting at P_i and going to P_{i+1} . The only difficulty with the continuity of g is for sequences of points, not in Λ , converging to Λ . But for a fixed T > 0 a point close enough to Λ will traverse at most one L_i of small arc length. Hence the continuity of g follows from that of f.

Finally, for any point $y \in Y - (\Lambda, 0, 0)$, $\omega(y) = \alpha(y) = (\Lambda, 0, 0)$ since $\omega(x_0 * R) = \alpha(x_0 * R) = \Lambda$ and the arc lengths of the L_i 's go to zero as $i \to \pm \infty$.

4. Chain recurrent and basic sets. The following theorem generalizes Bowen's result concerning abstract ω -limit sets being actual ω -limit sets for Axiom A diffeomorphisms.

THEOREM 4.1. Let f be a smooth flow on M and let Λ be a hyperbolic closed invariant subset. If $f|_{\Lambda}$ is an abstract ω -limit set and $\alpha > 0$, then there is an $x \in W_{\alpha}^{u}(\Lambda) \cap W_{\alpha}^{s}(\Lambda)$ such that $\alpha(x) = \omega(x) = \Lambda$.

PROOF. Let N be a closed neighborhood of Λ whose maximal closed

invariant subset Λ' is hyperbolic [4]. Take $\alpha > 0$ and, without loss of generality, assume the α neighborhood of Λ is contained in N. This insures that $W_{\alpha}^{u}(\Lambda) \cap W_{\alpha}^{s}(\Lambda) \subset \Lambda'$.

Let δ be the number guaranteed in Proposition 2.4 and let $\epsilon > 0$ be the number in Proposition 2.2 corresponding to $\delta/2$ and α . By Theorem 3.1, Λ is connected and $f|_{\Lambda}$ is chain recurrent. Let $x_0 * R$ be an infinite $(\epsilon, 1)$ -chain with $\omega(x_0 * R) = \alpha(x_0 * R) = \Lambda$ as constructed in Lemma 3.2. By Proposition 2.2 there is an $x \in W^u_{\alpha}(\Lambda) \cap W^s_{\alpha}(\Lambda) \subset \Lambda'$ which $\delta/2$ -traces $x_0 * R$. What we need to show is that $\omega(x) = \omega(x_0 * R)$ and similarly that $\alpha(x) = \alpha(x_0 * R)$.

Given $\varepsilon_1 > 0$ let $\beta > 0$ be such that if $d(p,q) < \beta$ then $d(p \cdot t, q \cdot t) < \varepsilon_1$ for $|t| \le 1$. Let S > 1 be the number guaranteed in Proposition 2.4(2) corresponding to this β . By our choice of $x_0 * R$ there is a time T > 0 such that if t > T then $x_0 * [t - 2S, t + 2S]$ consists of at most two orbit segments and, since the jump is small, $d((x_0 * t) \cdot s, x_0 * (t + s)) < \delta/2$ for $s \in [-2S, 2S]$. Thus since $x \cdot R \delta/2$ -traces $x_0 * R$, $d(x \cdot g(t + s), (x_0 * t) \cdot s) < \delta$ for $s \in [-2S, 2S]$. Let h(s) = g(t + s) - g(t); thus $d((x \cdot g(t)) \cdot h(s), (x_0 * t) \cdot s) < \delta$ for $s \in [-2S, 2S]$. Proposition 2.4(1) implies that |h(s) - s| < 1 for $s \in [-2S, 2S]$, hence h([-2S, 2S]) contains [-S, S]. Thus there is an |r| < 1 such that $d(x_0 * t, (x \cdot g(t)) \cdot r) < \beta$. Applying f_{-r} gives

$$d((x_0 * t) \cdot (-r), x \cdot g(t)) < \varepsilon_1.$$

So after time T every point on the orbit of x is within ε_1 of some point on $x_0 * R$ and vice versa. Therefore $\omega(x) = \omega(x_0 * R) = \Lambda$ and similarly $\alpha(x) = \alpha(x_0 * R) = \Lambda$.

If we can show that the x in this theorem is in Λ then the orbit of x is dense in Λ .

COROLLARY 4.2. Let f be a smooth flow on M, and let Λ be a hyperbolic connected subset such that $f|_{\Lambda}$ is chain recurrent. If Λ has local product structure then it is topologically transitive.

Like Bowen [1], we will use the tracing theorem to obtain an isolating neighborhood for Ω in the Axiom A flow case.

Theorem 4.3. If Λ is a hyperbolic closed invariant set for f with local product structure then it has a fundamental neighborhood, i.e., there is an open neighborhood U of Λ such that $\bigcap_{t \in R} U \cdot t = \Lambda$.

PROOF. Since Λ has local product structure there is an $\alpha>0$ such that $W_{\alpha}^{s}(\Lambda)\cap W_{\alpha}^{u}(\Lambda)=\Lambda$. Let V be a neighborhood of Λ whose maximal closed invariant subset Λ' is hyperbolic. Let δ be the number guaranteed in Proposition 2.4 with Λ' being the hyperbolic set. Proposition 2.2 gives an $\epsilon>0$ depending on α and $\delta/2$ so that every $(\epsilon,1)$ -chain in Λ can be $\delta/2$ -traced by a point in $W_{\alpha}^{s}(\Lambda)\cap W_{\alpha}^{u}(\Lambda)$. Choose β , $0<\beta<\epsilon/2$, such that if $d(x,y)<\beta$ then $d(x\cdot t,y\cdot t)<\min\{\delta/2,\epsilon/2\}$ for all $|t|\leqslant 1$. Let U be a β neighborhood of Λ contained in V. We will show that an orbit remaining in U for all time is actually in Λ by constructing an $(\epsilon,1)$ -chain in Λ which it $\delta/2$ -traces and then using Proposition 2.4(2).

Assume $y \cdot R \subset U$. Take $\{x_i\} \subset \Lambda$ with $d(x_i, y \cdot i) < \beta$ for each integer i.

This gives an $(\varepsilon, 1)$ -chain $x_0 * R$ with $t_i = 1$ since

$$d(x_i \cdot 1, x_{i+1}) \leq d(x_i \cdot 1, y \cdot (i+1)) + d(y \cdot (i+1), x_{i+1}) < \varepsilon/2 + \beta < \varepsilon.$$

The orbit of $y \delta/2$ -traces $x_0 * R$. Since $x_0 * R$ is an $(\varepsilon, 1)$ -chain in Λ , there is an $x \in W_{\alpha}^{s}(\Lambda) \cap W_{\alpha}^{u}(\Lambda) = \Lambda$ which $\delta/2$ -traces $x_0 * R$. Hence $x \cdot R$ δ -traces $y \cdot R$ and by Proposition 2.4(2) they are equal. Thus $y \cdot R \subset \Lambda$ and the proof is completed.

These results lead to the following theorem concerning basic sets.

THEOREM 4.4. Λ is a basic set for a flow f if and only if

- (a') Λ is compact and invariant,
- (b') Λ is hyperbolic,
- (c') $f|_{\Lambda}$ is chain recurrent,
- (d') Λ is connected,
- (e') Λ has local product structure.

PROOF. Clearly Smale's definition of a basic set implies (a')-(d'), and (e') follows from the existence of an isolating neighborhood.

To prove the opposite implication note that Corollary 4.2 gives (d) and Theorem 4.3 gives (e). Proposition 2.3 implies that Λ is contained in the closure of the set of periodic orbits. The proof of Proposition 2.3 used Proposition 2.2 to construct tracing periodic orbits. Since Λ has local product structure, these periodic orbits are contained in Λ . This gives (c) and finishes the theorem.

A hyperbolic component of $\Re(f)$ satisfies (a')-(d') and also has local product structure because of the following proposition. Consequently, a hyperbolic component of $\Re(f)$ is a basic set.

PROPOSITION 4.5. Let Λ be a hyperbolic component of $\Re(f)$ then $W^s(\Lambda) \cap W^u(\Lambda) = \Lambda$.

PROOF. Let $x \in W^s(\Lambda) \cap W^u(\Lambda)$. For each $y \in \Lambda$ we will show $x \sim y$ so $x \in \Re(f)$ and, in particular, $x \in \Lambda$ by Proposition 2.1. Since $x \in W^s(z)$ for some $z \in \Lambda$, construct a chain from x to $z \cdot t$ for some large t and then from $z \cdot t$ to y in Λ . Similarly, $x \in W^u(z')$ for some $z' \in \Lambda$ so construct a chain from y to $z' \cdot (-t)$ for some large t and then jump to the orbit of x.

REFERENCES

- 1. R. Bowen, ω-limit sets for Axiom A diffeomorphisms, J. Differential Equations 18 (1975), 333-339.
- 2. C. Conley, The gradient structure of a flow: I, IBM Research, RC 3932 (#17806), Yorktown Heights, New York, July 17, 1972.
 - 3. J. Franke and J. Selgrade, Hyperbolicity and chain recurrence (submitted).
- 4. M. W. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1969/70), 121-134. MR 41 #7232.
- 5. C. Pugh and M. Shub, The Ω -stability theorem for flows, Invent. Math. 11 (1970), 150–158. MR 44 #4782.
- 6. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598; erratum, 39, p. 1593.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607