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JOHN E. FRANKE AND JAMES F. SELGRADE

Abstract. An abstract «-limit set for a flow is an invariant set which is

conjugate to the «-limit set of a point. This paper shows that an abstract «-

limit set is precisely a connected, chain recurrent set. In fact, an abstract'«-

limit set which is a subset of a hyperbolic invariant set is the «-limit set of a

nearby heteroclinic point. This leads to the result that a basic set is a

hyperbolic, compact, invariant set which is chain recurrent, connected, and

has local product structure.

1. Introduction. R. Bowen [1] defines a homeomorphism on a compact

metric space to be an abstract u-limit set if it is conjugate to the tj-limit set of

some point. He shows that if / is an Axiom A diffeomorphism and if /

restricted to A, a subset of the nonwandering set Ü, is an abstract co-limit set

then A = u(x) for some x E ti. In this paper we investigate related questions

for flows.

Definition. A flow / on A is an abstract u-limit set if there is a flow g on X

a compact metric space and an x G X so that g| / ^ is topologically conjugate

to/.

C. Conley [2] defines a weak form of recurrence, called chain recurrence, for

a flow / on a compact metric space M. The set of points with this recurrence

property is called the chain recurrent set •&(/). If •&(/) = M then/is said to

be chain recurrent.

Theorem A. A flow f on A is an abstract lo-limit set if and only if A is

connected and f is chain recurrent.

Theorem B. Let f be a smooth flow on M and let A be a hyperbolic closed

invariant subset of M. 7//|A is an abstract w-limit set and if a > 0, then there is

an x E Wau(N) n Was(A) such that u(x) = a(x) = A. (Was(A) and Wau(A)

denote local stable and unstable manifolds of A.)

If A has local product structure (i.e., WJ(A) n H£"(A) = A) in addition to

the hypothesis in Theorem B, then this x is a point in A and its orbit is dense

in A. In the case that / is an Axiom A flow, Ü has local product structure [5]

so Theorem B gives the flow version of Bowen's result.

S. Smale [6] defines a basic set for a flow / on M to be a set A such that
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(a) A is compact and invariant,

(b) A is hyperbolic,

(c) periodic orbits are dense in A,

(d) A has a transitive orbit,

(e) there is an open neighborhood U of A such that r\,eRf,{U) = A, U is

called a fundamental neighborhood.

We are able to weaken several of Smale's conditions and still obtain an

equivalent definition of a basic set.

Theorem C. A is a basic set for a flow f if and only if

(a') A is compact and invariant,

(b') A is hyperbolic,

(c')/Ia 's chain recurrent,

(d') A is connected,

(e') A has local product structure.

Theorem B with local product structure gives (d); Proposition 2.3 in §2 with

local product structure gives (c); and (e) follows from

Proposition D. If A is a hyperbolic closed invariant set with local product

structure then it has a fundamental neighborhood.

2. Background and notation. Let / be a flow on a compact metric space

iM,d). For subsets A of M and J of R, define A J =/(Ax7). Given

e, F > 0, an infinite (e, T)-chain is a pair of doubly infinite sequences

{• • • ,x_2,x_x,x0,xx,x2,...;... ,t-2,t_x,t0,tx,t2,...}

such that t¡ > F and d{x¡ ■ t¡,xi+x) < e for all i. Let x0 * t denote the point

on this chain t units from x0, i.e., if t > 0 then

x0 * t = x¡ - (t -  2  /„)
\        n=0     /

where 2i,=o '« < * < 2ñ=o '» and if ' < ° then

x0 * t = X¡ ■ (t + 2 tnJ

where - 2«-i xn < ' < ~ 2,7=;-i t„.\fa,b E R, define

x0* [a,b] =    U   {*„* /}.
te[a,b]

Given an infinite (e, F)-chain x0 * R define its w-limit set by

uixr, * R) =  D Cl (x0 * [t, oo)).u (>0

Given x, ^ G M and e, F > 0, an (e, T)-chain from x to y is a finite

sequence of points and times, as above, with x0 = x and xn = y. Let ^(f)

= {(x,j) G M X MI for any e, T > 0 there is an (e, F)-chain from x to y}; "éP

is a closed subset of M X M and is a transitive relation. The c/iaïAi recurrent set

&(/) is {x E M\{x,x) E 9if)}. ÍR is a closed invariant set containing ñ. For
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A C M we say /|A is chain recurrent if A is a compact invariant set and

<5l(/|A) = A. 9if) induces an equivalence relation on 'S//). For x,y

E 9i(/), x is equivalent to y (written x ~ y) if ix,y) G *?(/) and iy,x)

E <3>(/). Conley [2] shows

Proposition 2.1. The equivalence classes under ~ are precisely the connected

components of <&(/). And if A is a component of ■&(/) then ÍP(/|A) = A X A,

i.e., the (e, T)-chains between points of A can be chosen to lie in A.

Consequently ^(/l^) = 9l(/), i.e.,/^ is chain recurrent. Also, the compo-

nents of & are the maximal connected subsets of M such that / restricted is

chain recurrent.

A closed invariant set A C M is hyperbolic if the tangent flow Tft leaves

invariant a continuous splitting TAM = Es © £" ffi £ where, for some X

E (0,1) and some Riemannian metric,

(i) if v E Eu and / > 0 then \Tf,iv)\ > \~'\v\,

(ii) if v G Es and t > 0 then |r/,(i/)| < X'\v\,

(iii) £ is the span of the vectorfield of/.

Stable manifold theory for a hyperbolic invariant set asserts, for each

x G A, the existence of a-disks Was(x) and W^(x) which are tangent to

Ex and E". These families of disks are invariant; and there is a X G (0,1)

such that

Wjix) = [y E M\dix ■ t,y ■ t) < «A' for all t > 0},

Wauix) = {y E M\d(x ■ t,y ■ t) < aX~< for all t < 0}.

Let

Was(A) =   U  rç'fx)   and    Wau(A) =   U  H£"(*)-
xeA iëA

A is said to have local product structure if there is an a > 0 such that

Wau(A) n Was(A) = A.

With certain hyperbolicity assumptions it is possible to approximate infinite

(e, F)-chains with actual orbits. More precisely, an orbit y • R is said to 8-trace

an infinite (e, F)-chain x0 * R if there is an orientation preserving homeomor-

phism g of R fixing the origin such that d(x0 * t,y ■ g(t)) < 8 for all t E R.

We call g a reparameterization of y ■ R. In [3] we show

Proposition 2.2. Let A be a hyperbolic closed invariant set. Given 8 > 0 and

a > 0 there is an e > 0 so that each (e, 1 )-chain in A can be 8-1raced by some

x E Was(A) n Wa"(A).

Proposition 2.3. If A is a hyperbolic closed invariant set and /|A is chain

recurrent, then A is contained in the closure of the set of periodic orbits off.

Proposition 2.4. If A is a hyperbolic closed invariant set then there exists

8 > 0 so that:

( 1 ) If x, y G A and [tx, t2 ] is an interval containing zero and g is a reparame-

terization of y • [tx, t2] with d(x ■ t,y ■ g(t)) < 8 for all t E [tx, t2], then

t - git)\ < I-
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(2) For each ß > 0 there is S > 0 such that, if x, y E A ízai<¿ g is a

reparameterization of y ■ R with dix ■ t,y ■ g{t)) < <5 for all t belonging to an

interval I where I n g{I) contains [-S,S], then d{x,y ■ r) < ß for an r with

\r\ < 1. Moreover, if I D gil) = R then x = y ■ r.

Part (2) of Proposition 2.4 establishes a type of flow expansiveness which

says, roughly, that if two orbits are close enough for long enough time then

segments of these orbits are much closer.

3. Abstract co-limit sets are chain recurrent.

Theorem 3.1. Let f be a flow on a compact metric space A. Then the following

three conditions are equivalent:

{I) f on A is an abstract u-limit set.

(2) There is no proper open subset U of A with U * 0 such that (Cl U ) ■ T

C U for some F > 0.
(3) A is connected and/|A is chain recurrent.

We will show (1) => (2) => (3) => (1). The arguments are flow versions of

Bowen's Theorem 1 [1] plus the following lemmas:

Lemma 3.2. Let A be connected and/|A be chain recurrent. Then given e > 0

there is an infinite (e, l)-chain xQ * R such that co{x0 * R) = a{x0 * R) = A. In

addition, given any e', T > 0 there is an S > 0 such that x0 * [S, oo) and x0

* (-oo, -S] are (e', T')-chains.

Proof. Given e > 0, let {e(} and {Fj be sequences with e, < e and T¡ > 1

such that e, -» 0 and T¡ -* oo as i" -» oo. For each positive integer i pick an e(-

dense set of points in A and, by Proposition 2.1, construct a finite (e(, 7J)-chain

connecting all these points. String all of these chains together to get an infinite

(e, l)-chain with the desired properties.

Lemma 3.3. Let U be a nonempty, open, proper subset of A compact with

(Cl U) • T C U for some T > 0. Then U' = U,^oU ■ t is a positively invari-

ant, open, proper subset of A with (Cl V) ■ T C U'.

Proof. Clearly U' is open and positively invariant. U' = Uo<,<rt/-i

since (Cl U) ■ T C U; and Cl U' = U0<(<7-(C1 U) ■ t since [0, F] is'compact.

Thus

{CW)-T=(   U    {ClU)-t)-T
\0<r<7- /

=     U    ((Cl U) ■ T) ■ t C     U    U ■ t = U'
0</<r o<(<7-

To show U' is proper assume U' = A. Let x0 E A — Cl U * 0 and x¡

= x0 ■ (iT) for i = -1, -2, .... Each x,■ E A - Cl U since (Cl U) ■ T C U.
Since x¡ G U' — Uo<,<7-t/ ■ t there is ay,: G U such thaty¡ ■ t = x¡ for some

0 < / < F. Note that y¡ ■ T E U ■ T. Let a > 0 he a lower bound for the

time it takes points to flow from (Cl U) ■ F to A — U. The amount of time the

orbit from x_x to x0 spends in U • T is less than F - 2a. Since the amount of

time the orbit from x¡ to xi+x spends in U is less than or equal to the amount

the orbit from xi+x to xi+2 spends in U ■ T, the amount of time the orbit from
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x¡ to x¡+x spends in U ■ T decreases by at least 2a. Iterating this procedure

shows that eventually there are no points of U • T between x¡ and xi+x, which

is a contradiction. Thus U' is proper.

Proof of Theorem 3.1. (1) => (2). Let g be a flow on X and h be the

conjugacy between gLx) and/|A. Suppose U is a nonempty, open, proper

subset of A with (Clt/) • T C U. By Lemma 3.3, U' = Ut>0U • t has the

same properties as U plus being positively invariant. Let V = h(U'). V is a

nonempty, open, proper subset of co(x) which is positively invariant. Since

Cl (V) is compact and (Cl U') ■ T C U', there is a P > 0 such that'(Cl V) ■ P

C V. Again by Lemma 3.3, V = U/>0K • t is a positively invariant, open,

proper subset of co(x) with Cl V ■ P C V. Hence Cl V # co(x).

Let y E u(x) - Cl V, z E V',a = d(y, Cl V) > 0, and

ß = d(w(x) - Cl V, Cl (V ■ P)) > 0.

Let y > 0 be such that if d(p,q) < y then c/(/? • t,q • t) < \ min {a,/?} for all

t with 0 < t < P. Choose S > 0 such that c7(x • [5, oo),u(x)) < y.

Since 2 G co(x) there is a time S' > S such that c7(x • S",z) < y. Now

c7(jc • (t + S'),z ■ t) < a/2 implies c7(x • (i + S'),y) > a/2 for 0 < / < P.

d(x ■ (P + S'),z ■ P) < ß/2 and z ■ P E V ■ P,

d(x ■ (P + S')Mx) - V) > ß/2 > y.

Thus there is a point z, in K' such that d(x • (£ + S'),z.) < -y. Successively

repeating the preceding argument for time intervals of length P shows that

dix • t,y) > a/2 for all í > S' which shows .y £ co(x). This contradiction

finishes (1) => (2).

Proof of (2) => (3). If A were not connected then the open-closed sets of a

separation contradict (2). To show A is chain recurrent take e, F > 0 and x0

G A. We will construct an (e, F)-chain from x0 to itself. Take a finite open

e/2-cover of A. Let U0 and Ux be sets in this cover which contain x0 and x0 ■ T,

respectively. If Ux = U0 we are done. Since Cl Ux ■ T <t Ux, Ux ■ T meets

another set U2 in the cover. Cl (Ux U (72) • T <t Ux U U2 so (Ux U U2) ■ T
meets another set t/3 in the cover. Continue this procedure until Un is equal to

(70. For each / = 0, 1, ...,«- 1 there is a point x¡ in U0 U • • • U U¡ such

that Xj ■ T E Ui+X. So there is an (e, F)-chain from jc, to any point in Ui+X.

By induction one can chain from x0 to any point in Ui+X ; and hence there is

an (e, F)-chain from x0 to x0.

Proof of (3) => (1). Let {■■■ ,x_x,x0,xx,...;... ,t_x,t0,tx,...} be an
infinite (e, F)-chain with co(xQ * R) = a(x0 * R) = A as guaranteed in Lem-

ma 3.2. Embed A in the Hubert cube C and form the Cartesian product

C X [0,1] . For each integer i, define

= f x; ■ [0,f,.]X (1/'(/+ 1),0)       if / > 0,

'     W[0,r,]x(lA,0) if / < 0,
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h =

the line segment connecting ix¡ • t¡) x ( OJ

t0(*i+i) x (7T2. °)     if'>0,

the line segment connecting ix¡ • t¡) x ( t , O)

to(xf+1)x(^,0J     ifi<-l,

an arc connecting (x_, • r_1) x (-1, 0) to (x"0) x (1,0) which

has nonzero last coordinate (w-coordinate) except at its ends  if í = -1.

Figure 1

Let y = (A, 0,0) U Ufi 1 (F, U I,). We will define a flow on Y (see Figure 1)

such that one point will have its a- and co-limit sets equal to (A, 0,0) which

shows that A is an abstract co-limit set. Define g on (A, 0,0) by g((x,0,0)

= iftix),0,0). On P let g be the flow induced by / On L¡ let g be the flow
parameterized by arc length starting at P¡ and going to Pi+X. The only

difficulty with the continuity of g is for sequences of points, not in A,

converging to A. But for a fixed F > 0 a point close enough to A will traverse

at most one L¡ of small arc length. Hence the continuity of g follows from that

of/
Finally, for any point y E Y - (A, 0,0), co(_y) = a{y) = (A, 0,0) since

to{x0 * R) = a{x0 * R) = A and the arc lengths of the L,'s go to zero as

/ -* ±00.

4. Chain recurrent and basic sets. The following theorem generalizes Bowen's

result concerning abstract co-limit sets being actual co-limit sets for Axiom A

diffeomorphisms.

Theorem 4.1. Let f be a smooth flow on M and let A be a hyperbolic closed

invariant subset. If /|A is an abstract co-limit set and a > 0, then there is an

x E Wau{A) n Was{A) such that a{x) = u{x) = A.

Proof. Let N he a closed neighborhood of A whose maximal closed



ABSTRACT CO-LIMIT SETS AND CHAIN RECURRENT SETS 315

invariant subset A' is hyperbolic [4]. Take a > 0 and, without loss of

generality, assume the a neighborhood of A is contained in N. This insures

that Wau{A) n Was{A) C A'.

Let 8 be the number guaranteed in Proposition 2.4 and let e > 0 be the

number in Proposition 2.2 corresponding to 8/2 and a. By Theorem 3.1, A is

connected and/|A is chain recurrent. Let x0 * R he an infinite (e, l)-chain with

u{xQ * R) = a{x0 * R) = A as constructed in Lemma 3.2. By Proposition 2.2

there is an x E Wau{A) n ^(A) C A' which ô/2-traces x0 * R. What we

need to show is that co(x) = co(x0 * R) and similarly that a(x) = a(x0 * R).

Given e. > 0 let ß > 0 be. such that if dip, q) < ß then dip • t,q • t)< e.

for |/| < 1. Let S > 1 be the number guaranteed in Proposition 2.4(2)

corresponding to this ß. By our choice of x0 * R there is a time F > 0 such

that if / > F then x0 * [t — 25, t + 25] consists of at most two orbit segments

and, since the jump is small, d{{x0 * t) • s,x0 * {t + s)) < 8/2 for s G [-25,

25]. Thus since x ■ R cS/2-traces x0 * R, dix • git + s),{x0 * t) • s) < 8 for í

G [-25,25].  Let his) = git + s) - git);  thus d{{x ■ git)) ■ his),{x0 * t) ■ s)

< 5 fors G [-25,25]. Proposition 2.4(1) implies that |/i(s) - s\ < 1 for s

G [-25,25], hence /i([-25,25]) contains [-5,5]. Thus there is an \r\ < 1

such that d{xQ * t,ix ■ g{t)) ■ r) < ß. Applying f_r gives

diix0*t)-{-r),x-git))<ex.

So after time F every point on the orbit of x is within e, of some point on

xQ * R and vice versa. Therefore co(x) = co(x0 * R) = A and similarly a{x)

= a{xQ * R) = A.
If we can show that the x in this theorem is in A then the orbit of x is dense

in A.

Corollary 4.2. Let f be a smooth flow on M, and let A be a hyperbolic

connected subset such that f\^ is chain recurrent. If A has local product structure

then it is topologically transitive.

Like Bowen [1], we will use the tracing theorem to obtain an isolating

neighborhood for Í2 in the Axiom A flow case.

Theorem 4.3. If A is a hyperbolic closed invariant set for f with local product

structure then it has a fundamental neighborhood, i.e., there is an open neighbor-

hood U of A such that C\ieR U ■ t = A.

Proof. Since A has local product structure there is an a > 0 such that

HJ^A) n W^u (A) = A. Let F be a neighborhood of A whose maximal closed

invariant subset A' is hyperbolic. Let 8 he the number guaranteed in

Proposition 2.4 with A' being the hyperbolic set. Proposition 2.2 gives an

e > 0 depending on a and 5/2 so that every (e, l)-chain in A can be ô/2-traced

by a point in WJ{A) n ^"(A). Choose ß, 0 < ß < e/2, such that if d{x,y)

< ß then dix ■ t,y ■ t) < min{<V2,e/2} for all |f| < 1. Let t/be a ß neighbor-
hood of A contained in V. We will show that an orbit remaining in U for all

time is actually in A by constructing an (e, l)-chain in A which it ô/2-traces

and then using Proposition 2.4(2).

Assume y • R C U. Take {*,■} C A with d{x¡,y ■ i ) < ß for each integer i.
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This gives an (e, l)-chain x0 * R with t¡ = 1 since

d(x, ■ l,xM) < dixi ■ \,y ■ (i + 1)) + d(y ■ (i + l),xi+x) < e/2 + ß < e.

The orbit of y ô/2-traces x0 * R. Since x0 * R is an (e, l)-chain in A, there is

an x E Was(A) n Wau(A) = A which 5/2-traces x0 * R. Hence x ■ R 6-traces

y ■ R and by Proposition 2.4(2) they are equal. Thus y ■ R C A and the proof

is completed.
These results lead to the following theorem concerning basic sets.

Theorem 4.4. A is a basic set for a flow f if and only if

(a') A is compact and invariant,

(b') A is hyperbolic,

(c')/Ia 's chain recurrent,

(d') A is connected,

(e') A has local product structure.

Proof. Clearly Smale's definition of a basic set implies (a')-(d'), and (e')

follows from the existence of an isolating neighborhood.
To prove the opposite implication note that Corollary 4.2 gives (d) and

Theorem 4.3 gives (e). Proposition 2.3 implies that A is contained in the

closure of the set of periodic orbits. The proof of Proposition 2.3 used

Proposition 2.2 to construct tracing periodic orbits. Since A has local product

structure, these periodic orbits are contained in A. This gives (c) and finishes

the theorem.

A hyperbolic component of §l(/) satisfies (a')-(d') and also has local

product structure because of the following proposition. Consequently, a

hyperbolic component of &(/) is a basic set.

Proposition 4.5. Let A be a hyperbolic component of 'Olif) then WsiA)

n W"iA) = A.

Proof. Let x E WsiA) n W"(A). For each>> G A we will show x ~ y so

x E &(/) and, in particular, x E A by Proposition 2.1. Since x E Wsiz) for

some z E A, construct a chain from x to z ■ t for some large t and then from

z ■ t to y in A. Similarly, x E Wu(z') for some z' E Aso construct a chain

from y to z' ■ (—t) for some large t and then jump to the orbit of x.
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