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A GENERALIZATION OF ANDERSON’S THEOREM ON
UNIMODAL FUNCTIONS

SOMESH DAS GUPTA'

ABSTRACT. Anderson (1955) gave a definition of a unimodal function on R”
and obtained an inequality for integrals of a symmetric unimodal function
over translates of a symmetric convex set. Anderson’s assumptions, espe-
cially the role of unimodality, are critically examined and generalizations of
his inequality are obtained in different directions. It is shown that a
marginal function of a unimodal function (even if it is symmetric) need not
be unimodal.

1. Introduction. A function f: R" =[0, o) is said to be unimodal by
Anderson (1955) if

(1.1) D(u) ={x:f(x) > u}
is convex for all u, 0 < u < oo. The main result of this paper is a generaliza-

tion of the following theorem of Anderson (1955) on the integrals of a
symmetric unimodal function over translates of a symmetric convex set.

THEOREM (ANDERSON). Let E be a symmetric (i.e., E = — E) convex set in
R" and f be a function on R" to [0, o0)such that f is symmetric (i.e.,
f(x) = f(—x)), unimodal, and [gf(x)p,(dx) < oo, where p, is the Lebesgue
measure on R". Then for any fixedy € R" and 0 < A < 1

(12) S+ Wy () > [ 7+ ) ().

This result was extended by Mudholkar (1966) by replacing the condition
of symmetry with the condition of invariance under a linear Lebesgue
measure-preserving group G of transformations of R” onto R”.

THEOREM (MUDHOLKAR). Let E be a convex, G-invariant set in R" and f be
a function on R" to [0, o0) such that f is G-incariant unimodal and
[ef(x) ,(dx) < 0. Then for fixed y € R" and any y* in the convex hull of the
G-orbit of { y}
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(13) J I+ ) > [ x+ 9) ()

Note that Anderson’s theorem follows from Mudholkar’s by taking G to be
the group of sign-change transformations.
Let us consider Anderson’s theorem again and define

(1.4) h(y) = fE F(x + ) o(d)

(1.5) = [ f(x + P)pxrr (x.9) mo(d),
where I is the indicator function. It is shown in later sections that the
conclusions of Anderson’s theorem, i.e.,

(1.6) h(y)=h(=y), h(W) > h(y), O<A<I,
still hold, if A(y) is defined by
(1.7) h(2) = [ 1009 e (%,9) 1(dx),

where f is a symmetric unimodal function on R” X R™ and C is a symmetric
convex set in R"*™, y € R™. Note that, for a fixed y, the section of C in the
n-space may not be symmetric. The conclusions (1.6) are shown to be valid
also if

(18) h() = [ Fi (o) (60 0) (e,

where f, and f, are symmetric unimodal functions on R” X R™. Note now
that f,(x, y) f,(x, y) may not be unimodal on R” X R™. A further generaliza-
tion is given in Corollary 1. All these results are then extended by replacing
the symmetry condition by G*-invariance for a suitable group G* of transfor-
mations. This is the main result in this paper and it is given in Theorem 1.
This generalizes Mudholkar’s theorem. The question of replacing p, by a
more general measure » is also studied.

A special case of our results shows that a marginal function (i.e., when a
subset of the variables are integrated out) of a symmetric unimodal function
is symmetric and “ray-unimodal” (i.e., (1.6) holds); however, some examples
are given to indicate that a marginal function of a unimodal function need
not be unimodal, even when the symmetry condition is assumed.

2. The main generalization of Anderson’s theorem. Let G, and G, be groups
of measurable one-to-one transformations of R"” — onto R" and R™ — onto
R™, respectively. Let G* be a subgroup of G, X G, satisfying the following:

ConpiTiION A. Given any g, € G, there exists g, € G, such that (g,
8) € G*.

Furthermore, assume the following:

ConpITioN B. The group G, is Lebesgue measure-preserving.

THEOREM 1. Let fi(x, y) (i = 1, ..., k) be G*-invariant unimodal functions
on R" X R™, x € R", y € R™. Assume that for each y,|. . . .. v, in R™
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k
(21) hv o) =[G m(dx) < oo.
i=1
Then
(22) h(grys - &%) = h(yi - )
for any g € G,, and
(23) R(yEs o 08) 2 R - s
where
v
24) =2 A&y
j=1

8y'S are in Gy, y is any positive integer, and (A, ..., \)) € P, the y-dimen-
sional probability simplex.

PrOOF. For 0 < 4, < oo, define
25) D;(u) = {(x,»): fi(x.y) > u;},
2.6) D (u,y) = {x:(x,y) € D, (u;)},
i=1,...,k. By Fubini’s theorem

. . k k
@D Aoy = [T f [ /. "HID,@,,V,)(x)u,.(dx)J 11 au,
i=1

i=]
(2.8) =f0°°...fo°°

Note now

k
I.L”{ m Di(ui’yi)}J dul’ ey duk.
i=1

k Y
(2.9) N D;(u,9*) 2 2 N,

i=1 Jj=1

k
M D;(u, ngyi)I'

i=1

This follows from the fact that the sets D,(;) are convex. Then, from
Brunn-Minkowski’s inequality, we get

k y k
(2.10) Bl M) Di(u %) | > ﬂn[ 2 }‘,[ D, (u;. gzj'yi)”
i=1 j=1 i=1
k
(211 > min Il‘n{ M D; (u;. g2jyi)] .
1<j<y i=1

By Condition A there exists g;' € G, such that (g;;', g;') € G*. Since f, is
G*-invariant,

(2.12) gl;'D,.(ui. 8i) = D;(u. )
and

(2.13) g5

[ i

k k
D, (u;. ngyi)jl = () D;(u.y,).
i=1 i=1
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Since G, is Lebesgue measure-preserving,
k

M D, (u;, 82Yi)
i=1
j=1,...,y. Now we get (2.3) from (2.8), (2.11) and (2.14). The result (2.2)
follows from (2.8) and (2.13).

k

M D, (u;, y:)

i=1

i)

(2.19) ™ =u,

CoROLLARY 1. Let f(x,y) (i = 1,..., k) be symmetric (about the origin)
unimodal functions on R" X R™, x € R",y € R™. Assume that (2.1) holds for
each y,,...,y, in R™. Then

(2.15) h(yyo o) = h(=ypo s = Yk
and

(2.16) AW, oo ) 2 h(yy, e Vi)
0<AL<L

Proor. Define G, and G, to be the groups of sign-change transformations
on R" and R™, respectively. Define G* to be the subgroup of G, X G,
consisting of two elements (+1, +1), (=1, —1). Then any y*, defined in
(2.4), can be expressed as Ay;, where |A| < 1. With these specializations the
desired results follow from Theorem 1.

REMARK 1. Brunn-Minkowski’s inequality states that for any two measur-
able sets 4, and 4, in R"

(2.17) a(01A4, + 8,45) >[ 6,1,/ (A4)) + 02N;/"(A2)]nv
where (6,, 6,) € P,. We have used this inequality in (2.11). However, instead

of using the full strength of this inequality we have used the following
property of p,:

(2.18) L. (0,4, + 0,4,) > min[ (A} “‘n(A2)]‘

So Theorem 1 will hold if we replace u, by a measure » on R” such that » is
G-invariant and for any two convex sets 4,, 4, in R”

(2.19) (0,4, + 0,4,) > min[v(4,), v(4,)].

0=(6,80, € P,

REMARK 2. It is seen from Corollary 1 that the unimodality assumption in
Anderson’s theorem is greatly relaxed. It can be further relaxed by consider-
ing the integrand in (2.1) as a function f which is a positive linear combina-
tion of finite products of symmetric unimodal functions. The conclusions of
Corollary 1 will still hold. This leads essentially to a generalization of
Sherman’s result (1955).

REMARK 3. Consider a measure G on R™* such that

(221) [h(y.. ... )G (dy,. . ... dy,) < 0.
Define
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k
(222) FN=[ 11 f(xW)G(,, ..., ).
i=1
Then, under the assumptions in Corollary 1, it follows that
(223) [ 16N (@) > [ £(x, 1) (),
for 0 < A < 1. This leads to a generalization of Theorem 2 of Anderson
(1955).
REMARK 4. Let
224) Gt ={g € G:(8),8,) € G*forsomeg, € G, }.

Then, instead of Condition B, it is sufficient to assume that p, is G¥-invariant
in order to prove Theorem 1.

3. Some special cases. In this section we derive some useful special cases of
Theorem 1 and study the marginal function of a unimodal function.

THEOREM 2. Let G be a linear Lebesgue measure-preserving group of one-to-
one transformations of R" onto R". Let p(x) (i =1, ..., k) be G-invariant
unimodal functions on R". Assume that

K k
(.1) h(vis o) = 11 px+ ) 1T pi(x) po(dx)

i=1 i=s+1
forally, ...,y.in R",0 < s < k. Then
(3.2) h(yp ooy =h(gy ..., &)
for all g € G, and
(33 Ryt o8 2 k(.o Ve

where y* = 2Y_ | Ng.y,, v is any positive integer, g'sarein G,and (A}, ..., \)
E P,
ProOF. The result is obtained easily by specializing Theorem 1 as follows.
G,=G,=6G, G*={(g8):g€G}CcGCGXG,

ﬁ(x’y)=Pi(X + ), i=1...,s,

(34 = p,(x), i=s+1,...,k
m = n.

REMARK 5. Mudholkar’s theorem follows from Theorem 2. To see this,
define

3.5) k=2 s=1 p(x+y)=f(x+y), py(x)=Ig(x).
REMARK 6. Theorem 2 can be extended using the idea in Remark 2.

COROLLARY 2. Let f(x, y) be a symmetric unimodal function on R" X R™,
x € R", y € R™. Let C be a symmetric convex set in R"*™. Assume that

(3.6) RO)=[ (0 0)e (53 () < 0
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for all y € R™. Then

3.7 L) =Li(=»),
and
3.8) L) = i ()

for0 <A< 1,y € R™

ProoFr. This follows from Corollary 1, by taking k = 2, fi(x, y) = f(x, y),

fz(x, y) = IC(x’ y)‘
REMARK 7. Note that f,, defined in (3.6), is a unimodal function if m = 1.

However, this result is not true if m > 1, as shown by Example 1, which is
basically due to Anderson (see Sherman (1955)). In general, f), defined in

(3.6), need not be unimodal even when m = 1 if the symmetry condition is
dropped; this is shown in Example 2.
ExaMpLE 1. For (x, y) € R?, define f(x, y) = 1,(x)Iz(y)g(x + y), where

3, if|n|< Ly <1,
g() =12, if|n|< L 1<|<5,
0, elsewhere,

1= (tla 12), and
A= {x=(x;, %) |x|< L |x|< 1},
B={y=(ypr2 [n|<2|rl<5)

Then f is a symmetric unimodal function on R? X R2. Define
L) = [ fxp)dc =150 [ gx + ) d.
R? A

Note now £,(05, 4)=f(1, 0)=6, but £,(0.75, 2) <6, and (0.75, 2) =
1(0.5, 4) + 1(1, 0). Thus f, is not unimodal on R2.
ExaMpLE 2. For x, y in R, define

3, 0<x<y,0<y<],
f(xy)=12, 0<x<y1<y<2
0, elsewhere.

Then

o 3y, 0<y<l,
OV =[" fxy)yde=12y, 1<y <2,
T 0, elsewhere.

Note that f, is not unimodal on R' although f is unimodal on R' x R'.
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