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NECESSARY AND SUFFICIENT CONDITIONS
FOR L1 CONVERGENCE OF TRIGONOMETRIC SERIES

JOHN W. GARRETT AND CASLAV V. STANOJEVIC

Abstract. It is shown that for the class of cosine series satisfying a(»)log n

= o(l) and ¿Sa(n) > 0 that integrability and L1 convergence occur together.

Relaxing the monotonicity to bounded variation we show that our previous

result cannot be extended.

It is well known that the condition a(n)log n = o(l) is both necessary and

sufficient for L1 convergence for some classes of Fourier cosine series. Here

we show, for the class of cosine series satisfying a(«)log n = o(l) and

Aa(n) > 0, that integrability and L1 convergence occur together. Relaxing the

monotonicity to bounded variation we show that our previous result [1]

cannot be extended. Finally we show that a cosine series with Aan > 0 is

integrable if the norm of the derivative of the partial sums of its conjugate

series are bounded.

In what follows f(x) = lim,,^^ Sn(x) where

l "
S„(x) = yfl(0) + S [aik)coskx + b(k)sin kx].

¿ k=i

We denote on(x) = \/(n + i)~2"k=0 Sk(x), and S'n(x) is the derivative of the

conjugate of Sn(x).

Theorem 1. Let a(«)log n = o(\), b(n)\o% n = o(\), Aa(n) > 0, and Ab(n)

> 0. Then \\S¡\\ = o(/i).

Proof.

s:\\ = 2 [ka(k)cos kx + kb(k)sin kx]
k=\

2 I[k^aik)
k=\

Dki*)

+ [rCAZ»(rC)   -   b(k   +   \)]Dk(X)

+ na(n) Dni*) + nb(n) Dn (x)
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n-\ n-\

< B   2 A:Aa(/c)log/V+ B   ^ a(k + l)log/c
A:=l *=1

n-\ n-\

+ B   2 *û.6(Jt)log*+ 5   S ¿(* + l)lo8*
fc-1 fc-1

+ ß«a(«)log « + Bnb(n)log n

where />„(.*) and ö„(x) are the Dirichlet and conjugate Dirichlet kernels, and

B is an absolute constant arising from the fact that

\\D„(x)-l/2\\=0(logn)   and    || L\(x)\\ = O (log n).

Four terms are o(n) since a(n)log n = o(l), b(n)log n = o(l), and the (C,l)

method is regular. Thus,

n-\

|| S„' || < B   2 k[ùka(k) + kb(k)]log k+ o(n)
k=\

B-l

= 5   2 {kb([a(k) + b(k)]logk)
k=\

n-\

+ k[a(k + 1) + *(* + l)]log[(A + \)/k}} + o(n)

= B   £ [a(*) + p(*)]logJfc- Ä(/i- l)[a(n) + o(/i)]log/i

n-l

+ B   2 [a(* + 1) + 6(fc + l)]log(l + l/k)k+ o(n)
k = \

= o(n)

since

[a(n) + cb(«)]logn = o(l),

the (C,l) method is regular, and log(l + 1/ k)k converges to one.

Corollary 1. Let a(n)log n = o(\), b(n)log n = o(l), &a(n) > 0, and

àb(n) > 0. Then f is integrable if and only if Sn converges to f in Lx metric.

Proof. "If": Obvious. "Only if": It is well known that if/is integrable then

a„ converges to/ in L1 metric. Hence \\S„ - /|| < \\Sn - aj| + \\on - f\\. But

US, - on\\ = l/(n + 1)||^|| = o(l).
The following propositions are now apparent.

Proposition 1. Let f be integrable. Then Sn converges to f in Ll metric if and

only if IISJI = o(n).

Proposition 2. Let ||S„'|| = o(n). Then f is integrable if and only if S„

converges to f in Ll metric.

Indeed, for any sequence, A (n), the following proposition holds.
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Proposition 3. Let Ain) be a sequence of positive numbers.

(1) Let K - /|| = o(A(n)). Then \\Sn - f\\ = o(A(n)) if and only if ||^||
= oinAin)).

(2) Let \\Sn - /|| = o(A(n)). Then \\a„ - f\\ = o(A(n)) if and only if ||S„'||
= o^A^))^

(3) Let ||5„'|| = oinAin)). Then \\o„ - f\\ = oiAin)) if and only if \\Sn - f\\
= o(A(n)).

It is clear that Proposition 3 contains Proposition 1 as the special case

where Ain) = 1. Also, since ||5J| = o(l) is equivalent to/being constant, we

have the following special case. Let n\\Sn — f\\ = o(l) [n\\an -/|| = o(l)].

Then n\\o„ - f\\ = o(l) [n\\Sn - f\\ = o(l)] if and only if /is constant.

In Corollary 1 we required Aa(«) > 0. Several results on L1 convergence of

cosine series are known that only require bounded variation of ain), that is,

2*_i |Aa(«)| < oo. It is well known that if ain) = oil) and a(n) is quasi-

convex (2^xin + l)|A2a(«)| < oo) that Sn converges to /in L1 metric if and

only if a(n)log n = o(l). Using an inequality of Sidon, Telyakovskii [2] has

proved the following theorem where quasi-convexity is relaxed.

Theorem A. Let fix) = lim,^^ S„ix) where bin) = 0 and ain) = o(l). Let

numbers Ain) exist such that AAin) > 0, 2^=0^(i) < oo, and |Aa(/.)|

< Ain) for all n. Then Sn converges to f in L1 metric if and only if a(n)log n

= oil).

Recently we [1] found a condition necessary and sufficient for a modifica-

tion of Sn to converge to/ in L1 metric.

Theorem B. Let

.        n n n

Sni*) = T    2 MA) + 2     S ¿sa(j)coskx,
Z    k = 0 A:=l   j = k

b(n) = 0, a(n) = o(\), and 1™=x |Aa(«)| < oo. Then gn converges to f in Ll

metric if and only if

for e > 0 there exists ô > 0 (independent of n) such that

(C) f S A«(*)Z>fc(*)< e.

As a corollary we extended Telyakovskii's result.

Corollary B. Let b(n) = 0, ain) = o(l), 2^=l|Aa(«)| < oo, and (C) /»e

satisfied. Then Sn converges to f in Ll metric if and only if a(n)log n = o(l).

Here we show that if we require the conditions ain) = o(l) and

2"=i|Ai«(rt)| < oo then Theorem A cannot be extended beyond Corollary B.

Theorem 2. Let bin) = 0, a(n) = o(l), S"=1|Aa(«)| < oo, and a(n)\ogn

= o(l). Then Sn converges to f in 1} metric if and only if condition (C) is

satisfied.

Proof. Using gn as defined in Theorem B,
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||s„ (*)-/(*) || =

Tû(°)-

■a(0) + 2 a(k)coskx - f(x)
k=l

a(n + 1) + 2 [a(k) - a(n + 0]cos kx - f(x)
k=i

1 "
+ — a(n + 1) + 2 a(n + l)cos kx

2 k = \

|  2 A.a(*) +¿2 ba(j)coskx -f(x)+a(n + l)Dn(x)
L   k<-0 k=\ j=k

= \\gn(x)-f(x) + a(n+l)Dn(x)\\.

But \\a(n + l)Dn(x)\\ = o(l), since a(n)log n = o(l) and ||Z>„(jc)||

= O (log n). Thus, Sn converges to/ in L1 metric if and only if gn converges

to /in L1 metric. We see that the coefficients a(n) satisfy the requirements of

Theorem B, so the result follows.

At this point we see that if \2™=xb(n)\ < oo then ||SJ| = 0(||S^||). For

s.!-r r^(t)dt+fb(n)

< C  r \S~l(t)\dt dx+ 2tt

dx

2*(«)
n=l

= 2vt||S„'||+2vt 2*(«)

This leads to integrability conditions for/and/, the conjugate of/

Proposition 4. Le/ |2"_,6(«)| < oo. // ||3£|| = 0(1) r/ie/i /ël1. // /«

addition we require Aa(«) > 0, ¿\b(n) > 0, then f E L1.
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