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S-CLOSED SPACES
TRAVIS THOMPSON

ABSTRACT. A topological space X is said to be S-closed if and only if for
every semiopen cover of X there exists a finite subfamily such that the union
of their closures cover X. For a compact Hausdorff space, the concept of
S-closed is shown to be equivalent to the concepts of extremally discon-
nected and projectiveness.

A Hausdorff space X is H-closed if and only if for every open cover
{U,]la € A} there exists a finite subfamily {U,|i = 1,2, ..., n} such that the
union of their closures cover X. In this paper, we expand this concept using
semiopen sets.

DEFINITION 1. A set 4 in a topological space X is semiopen if and only if
there exists an open set V such that ¥ ¢ A c ¥V, where V is the closure of V.

DEFINITION 2. A filterbase F = {A,} s-converges to a point x, € X if for
each semiopen set ¥ containing x, there exists an 4, € F such that 4, c V.

DEFINITION 3. A filterbase F = {A4,} s-accumulates to a point x, € X if for
each semiopen set V' containing x, and 4, € F, 4, N V # @.

The corresponding definitions using nets are apparent and will not be
stated. An easy consequence of these definitions is

THEOREM 1. Let F be a maximal filterbase in X. Then F s-accumulates to a
point x4 € X if and only if F s-converges to x,.

DEFINITION 4. A topological space X is S-closed if and only if for every
semiopen cover {U,Ja € T'} of X there exists a finite subfamily {U,li=1,
2, ..., n} such that the union of their closures cover X.

It is apparent from the definition above that a Hausdorff S-closed space is
H-closed. The reader can readily find examples to show that the converse
need not be true. Our first result lies in Theorem 2 which characterizes
S-closed spaces.

THEOREM 2. For a topological space the following are equivalent:

(1) X is S-closed.

(ii) For each family of semiclosed sets { F,)} (i.e., each F, is the complement of
a semiopen set) such that N (F,) = @, there exists a finite subfamily {F,};_,
such that N7_(F,)" = @.
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(iii) Each filterbase F = {A,} s-accumulates to some point x, € X.
(iv) Each maximum filterbase F s-converges.

PROOF. (i) = (iv). Let F = {A,} be a maximum filterbase. Suppose that F
does not s-converge to any point; therefore, by Theorem 1, F does not
s-accumulate to any point. This implies that for every x € X, there exists a
semiopen set V' (x) containing x and an 4,,, € F such that 4,.,, N V(x) =
@. Obviously { ¥ (x)|x € X} is a semiopen cover for X and by hypothesis
there exists a finite subfamily such that N7_,V(x,) = X. Since F is a
filtlerbase, there exists an A, € F such that A, C Nj.,4,,) Hence,
Ay N V(x) =@, 1< i< n, which implies 4y N (U7-V (X)) = 4N X =
@, contradicting the essential fact that 4, # @.

(iv) = (iii). Each filterbase is contained in a maximal filterbase.

(iii) = (i1). Let { F,} be a collection of semiclosed sets such that N F, = &.
Suppose that for every finite subfamily, ﬂ;’,:,(Fa,_)Osﬁ @. Therefore F =
{ﬂ;’_,(Fa‘)oln € Z*, F, € {F,}} forms a filterbase. By hypothesis, F s-ac-
cumulates to some point x, € X. This implies that for every semiopen set
V (x,) containing x,, F> N V(x,) # @, for every a € A. Since xo € N F,
there exists an a; € A such that x, & F,. Hence, x, is contained in the
semiopen set X — F, . Therefore,

(F,)' N(X = F,) =(F,)'n(x = (F,)) = 2,

contradicting the fact that F s-accumulates to x,,.
(i) = (i). Let {V,} be a semiopen covering of X. Then N(X — V,) =@
By hypothesis, there exists a finite subfamily such that N7_(X — Va'_)0 =
N (X -7, ) = 9. Therefore, N7 = X, and consequently X is S-
closed. [

1-1

THEOREM 3. Fach S-closed, first countable, regular space is finite.

PrROOF. Let X be an S-closed, first countable, regular space. Suppose, if
possible, that X is infinite. Since X is compact, it is not discrete. Thus X has
an accumulation point x. Let {U,|n € N} be a local base at x such that
U, =X, U,isopenin X and U,,, C U, foreachn € N.Let {N,|k € N} be
a family of pairwise disjoint infinite subsets of N (N = the set of positive
integers) such that U {N,|k € N} = N.Foreachk € N weset V, = {x} U
U{U, - U,,,|n € N,}). Then {V,|k € N} is a semiopen cover of X. If
n € N, then U{V|k < n}## X. Thus X is not S-closed and this is a
contradiction. []

COROLLARY. Each S-closed metrizable space is finite.
THEOREM 4. No regular space containing a P-point is S-closed.

PrROOF. The proof is omitted, because it is similar to the proof of Theorem
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3, but the index set of cardinality &, is decomposed into &, sets each of
cardinality &,. [

COROLLARY. BN — N is not S-closed.

PROOF. Assuming the continuum hypothesis, there are P-points in BN — N
(W. Rudin). J

Since every compact, countable, regular space is metrizable, we have from
the corollary to Theorem 3 the following.

COROLLARY. Each infinite, S-closed, regular space is uncountable.

LeMMA. If Y is a regularly closed subset in an S-closed space X, then Y is
S-closed.

PRrOOF. The proof is easy and is thus omitted.

THEOREM 5. Each extremally disconnected, compact space is S-closed.

ProoF. If X is extremally disconnected, then the closure of an open set is
an open set. The interior of a semiopen set is dense in it. We consider
{UP|t € T} instead of given semiopen cover.

COROLLARY. BN is S-closed.

THEOREM 6. If X is a S-closed regular space, then X is extremally discon-
nected.

PROOF. Suppose that X is not extremally disconnected. Then there exists a
regular open set O C X such that O — O and X — O are nonempty. Let
x € O — O. Then for every neighborhood V of x, ¥ N O # @. Therefore,
F = {(V N 0)) forms a filterbase in O. Since O is S-closed, F s-accumulates
to some point x; in 0. Quite obviously, the filterbase F also converges to x in
the usual sense. We claim that x, € O — O; for if it were, then xo € X — O
and every member of F would have to intersect X — O, an impossibility.
Thus, x, € 0. There now exists an open set U such that x, € U c U c O
and x € X — U. But since F converges to x, there must exist a neighborhood
of x, say ¥V, such that (¥ n O) c X — U. This then would imply that
(V' n 0) N U = @, contradicting the fact that F s-accumulates to x,. There-
fore, our assumption that X is not extremally disconnected is false, and the
theorem follows.

THEOREM 7. If X is a Hausdorff S-closed space, then X is extremally
disconnected.

ProOF. Although the proof is not identical to that of Theorem 6, it is quite
similar and is thus omitted.

COROLLARY. Let X be a regular compact space. Then X is S-closed if and
only if X is extremally disconnected.
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COROLLARY. The one-point compactifications of discrete spaces are not S-
closed spaces.

COROLLARY. Each S-closed, scattered, regular space is finite.

It is well known for a completely regular space X that X is extremally
disconnected if and only if B8X is extremally disconnected [3, p. 96]. There-
fore, we have the following corollaries:

COROLLARY. For a completely regular space X the following are equivalent:
(i) X is extremally disconnected.

(ii) BX is extremally disconnected.

(iii) BX is S-closed.

COROLLARY. For a compact Hausdorff space, the following are equivalent:
(1) X is extremally disconnected.

(i1) X is projective.

(iii) X is S-closed.

PROOF. The equivalence of (i) and (ii) are well known.

This last useful corollary allows us to see immediately that 8N is a S-closed
space, whereas SQ and SR are not. Additionally, we see that 8Q — Q is not
S-closed since it is not compact, and SR — R is not S-closed because it is not
extremally disconnected.

I would like to thank Professor Rastislav Telgarsky for his invaluable
suggestions in preparing this manuscript.
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