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5-CLOSED SPACES

TRAVIS THOMPSON

Abstract. A topological space X is said to be 5-closed if and only if for

every semiopen cover of X there exists a finite subfamily such that the union

of their closures cover X. For a compact Hausdorff space, the concept of

5-closed is shown to be equivalent to the concepts of extremally discon-

nected and projectiveness.

A Hausdorff space X is //-closed if and only if for every open cover

{ Ua\a E A) there exists a finite subfamily {Ua\i = 1,2, ..., n} such that the

union of their closures cover A. In this paper, we expand this concept using

semiopen sets.

Definition 1. A set A in a topological space X is semiopen if and only if

there exists an open set V such that V c A c V, where V is the closure of V.

Definition 2. A filterbase F = {Aa} s-converges to a point x0 G A if for

each semiopen set V containing x0 there exists an Aa E F such that Aa c V.

Definition 3. A filterbase F = {Aa} s-accumulates to a point x0 G A if for

each semiopen set V containing x0 and Aa G F, Aa n V =£ 0.

The corresponding definitions using nets are apparent and will not be

stated. An easy consequence of these definitions is

Theorem 1. Let F be a maximal filterbase in X. Then F s-accumulates to a

point x0E X if and only if F s-converges to x0.

Definition 4. A topological space X is 5-closed if and only if for every

semiopen cover {Ua\a E T} of A there exists a finite subfamily {U \i = 1,

2, . .. , At) such that the union of their closures cover X.

It is apparent from the definition above that a Hausdorff 5-closed space is

//-closed. The reader can readily find examples to show that the converse

need not be true. Our first result lies in Theorem 2 which characterizes

5-closed spaces.

Theorem 2. For a topological space the following are equivalent:

(i) A is S-closed.

(ii) For each family of semiclosed sets {Fa} (i.e., each Fa is the complement of

a semiopen set) such that C\(Fa) = 0, there exists a finite subfamily {Fa}"=x

such that n7=1(Fa)° = 0.
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(iii) Each filterbase F = {Aa} s-accumulates to some point x0 E X.

(iv) Each maximum filterbase F s-converges.

Proof. (i)=>(iv). Let £ = {Aa} be a maximum filterbase. Suppose that £

does not j-converge to any point; therefore, by Theorem 1, £ does not

j-accumulate to any point. This implies that for every x E X, there exists a

semiopen set V(x) containing x and an Aa(x) E F such that Aa(x) n V(x) =

0. Obviously {K(x)|x G A"} is a semiopen cover for A and by hypothesis

there exists a finite subfamily such that n"=xV(x¡) = X. Since £ is a

filterbase, there exists an A0 E F such that A0 c (~)"=xAaixy Hence,

A0 n V(x¡) - 0, 1 < i < n, which implies A0 n (U"=,K(x,)) = A0 n X =

0, contradicting the essential fact that A0 =£ 0.

(iv) => (iii). Each filterbase is contained in a maximal filterbase.

(iii) => (ii). Let (£a} be a collection of semiclosed sets such that C] Fa = 0.

Suppose that for every finite subfamily, n"=i(£a)° ¥= 0. Therefore £ =

{ D^iiFafln E Z+, F^ G {£a}} forms a filterbase. By hypothesis, £ s-ac-

cumulates to some point x0 E X. This implies that for every semiopen set

V(x0) containing x0, £o0 n V(x0) ¥" 0, for every a E A. Since x0 & D Fa

there exists an a0 E A such that x0 G Fa . Hence, x0 is contained in the

semiopen set X — Fa¡¡. Therefore,

iFj°nix-FJ = iFjn(x - iFJ°) = 0,

contradicting the fact that £ i-accumulates to x0.

(ii) => (i). Let {Va) be a semiopen covering of A. Then fl (X - Va) = 0.

By hypothesis, there exists a finite subfamily such that D"_X(X — Va)° =

DU\ix - Va) = 0- Therefore, D"-,^ = X, and consequently A is S-

closed.    □

Theorem 3. Each S-closed, first countable, regular space is finite.

Proof. Let A be an 5-closed, first countable, regular space. Suppose, if

possible, that X is infinite. Since A is compact, it is not discrete. Thus X has

an accumulation point x. Let {Un\n E TV} be a local base at x such that

77, = A, Un is open in A" and Un+X c t/„ for each « G TV. Let {Nk\k G A/} be

a family of pairwise disjoint infinite subsets of TV (TV = the set of positive

integers) such that U {Nk\k E TV} = TV. For each k E TV we set Vk = {x} u

U{t/„ - CTn+1|« G TVj.}. Then {K^Zc G TV} is a semiopen cover of A. If

n E TV, then U{^|A: < ai} =7^ Af. Thus X is not S-closed and this is a

contradiction.   □

Corollary. Each S-closed metrizable space is finite.

Theorem 4. No regular space containing a P-point is S-closed.

Proof. The proof is omitted, because it is similar to the proof of Theorem
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3, but the index set of cardinality N, is decomposed into N, sets each of

cardinality K,.    □

Corollary. ßN - N is not S-closed.

Proof. Assuming the continuum hypothesis, there are F-points in ßN — N

(W. Rudin).    □

Since every compact, countable, regular space is metrizable, we have from

the corollary to Theorem 3 the following.

Corollary. Each infinite, S-closed, regular space is uncountable.

Lemma. If Y is a regularly closed subset in an S-closed space X, then Y is

S-closed.

Proof. The proof is easy and is thus omitted.

Theorem 5. Each extremally disconnected, compact space is S-closed.

Proof. If A is extremally disconnected, then the closure of an open set is

an open set. The interior of a semiopen set is dense in it. We consider

{U,°\t E T} instead of given semiopen cover.

Corollary. ßN is S-closed.

Theorem 6. If X is a S-closed regular space, then X is extremally discon-

nected.

Proof. Suppose that A is not extremally disconnected. Then there exists a

regular open set O c A such that 0—0 and A - O are nonempty. Let

x G O - O. Then for every neighborhood V of x, V n O ¥= 0. Therefore,

F = {(V n O)} forms a filterbase in O. Since O is 5-closed, F s-accumulates

to some point x0 in O. Quite obviously, the filterbase F also converges to x in

the usual sense. We claim that x0 E O - O; for if it were, then x0 G X - O

and every member of F would have to intersect X — O, an impossibility.

Thus, x0 G 0. There now exists an open set U such that x0 G U c U c O

and x G X - U. But since F converges to x, there must exist a neighborhood

of x, say V, such that (V n O) c X - U. This then would imply that

(V n O) n i/ = 0, contradicting the fact that F s-accumulates to x0. There-

fore, our assumption that A is not extremally disconnected is false, and the

theorem follows.

Theorem 7. // A is a Hausdorff S-closed space, then X is extremally

disconnected.

Proof. Although the proof is not identical to that of Theorem 6, it is quite

similar and is thus omitted.

Corollary. Let X be a regular compact space. Then X is S-closed if and

only if X is extremally disconnected.
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Corollary. FA<? one-point compactifications of discrete spaces are not 5-

closed spaces.

Corollary. Each S-closed, scattered, regular space is finite.

It is well known for a completely regular space A that A is extremally

disconnected if and only if ßX is extremally disconnected [3, p. 96]. There-

fore, we have the following corollaries:

Corollary. For a completely regular space X the following are equivalent :

(i) A is extremally disconnected.

(ii) ßX is extremally disconnected.

(iii) ßX is S-closed.

Corollary. For a compact Hausdorff space, the following are equivalent :

(i) A is extremally disconnected.

(ii) X is projective.

(iii) X is S-closed.

Proof. The equivalence of (i) and (ii) are well known.

This last useful corollary allows us to see immediately that ßN is a 5-closed

space, whereas ßQ and ßR are not. Additionally, we see that ßQ — Q is not

5-closed since it is not compact, and ßR - R is not 5-closed because it is not

extremally disconnected.
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suggestions in preparing this manuscript.
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