S-CLOSED SPACES

TRAVIS THOMPSON

ABSTRACT. A topological space X is said to be S-closed if and only if for every semiopen cover of X there exists a finite subfamily such that the union of their closures cover X. For a compact Hausdorff space, the concept of S-closed is shown to be equivalent to the concepts of extremally disconnected and projectiveness.

A Hausdorff space X is H-closed if and only if for every open cover $\{U_a|a\in\Lambda\}$ there exists a finite subfamily $\{U_{a_i}|i=1,2,\ldots,n\}$ such that the union of their closures cover X. In this paper, we expand this concept using semiopen sets.

DEFINITION 1. A set A in a topological space X is semiopen if and only if there exists an open set V such that $V \subset A \subset \overline{V}$, where \overline{V} is the closure of V.

DEFINITION 2. A filterbase $F = \{A_a\}$ s-converges to a point $x_0 \in X$ if for each semiopen set V containing x_0 there exists an $A_a \in F$ such that $A_a \subset \overline{V}$.

DEFINITION 3. A filterbase $F = \{A_a\}$ s-accumulates to a point $x_0 \in X$ if for each semiopen set V containing x_0 and $A_a \in F$, $A_a \cap \overline{V} \neq \emptyset$.

The corresponding definitions using nets are apparent and will not be stated. An easy consequence of these definitions is

THEOREM 1. Let F be a maximal filterbase in X. Then F s-accumulates to a point $x_0 \in X$ if and only if F s-converges to x_0 .

DEFINITION 4. A topological space X is S-closed if and only if for every semiopen cover $\{U_a|a\in\Gamma\}$ of X there exists a finite subfamily $\{U_a|i=1,2,\ldots,n\}$ such that the union of their closures cover X.

It is apparent from the definition above that a Hausdorff S-closed space is H-closed. The reader can readily find examples to show that the converse need not be true. Our first result lies in Theorem 2 which characterizes S-closed spaces.

THEOREM 2. For a topological space the following are equivalent:

- (i) X is S-closed.
- (ii) For each family of semiclosed sets $\{F_a\}$ (i.e., each F_a is the complement of a semiopen set) such that $\bigcap (F_a) = \emptyset$, there exists a finite subfamily $\{F_{a_i}\}_{i=1}^n$ such that $\bigcap_{i=1}^n (F_a)^0 = \emptyset$.

Received by the editors December 1, 1975.

AMS (MOS) subject classifications (1970). Primary 54D20, 54D30; Secondary 54G05.

Key words and phrases. S-closed, extremally disconnected, projective.

- (iii) Each filterbase $F = \{A_a\}$ s-accumulates to some point $x_0 \in X$.
- (iv) Each maximum filterbase F s-converges.
- PROOF. (i) \Rightarrow (iv). Let $F = \{A_a\}$ be a maximum filterbase. Suppose that F does not s-converge to any point; therefore, by Theorem 1, F does not s-accumulate to any point. This implies that for every $x \in X$, there exists a semiopen set V(x) containing x and an $A_{a(x)} \in F$ such that $A_{a(x)} \cap \overline{V(x)} = \emptyset$. Obviously $\{V(x)|x \in X\}$ is a semiopen cover for X and by hypothesis there exists a finite subfamily such that $\bigcap_{i=1}^n \overline{V(x_i)} = X$. Since F is a filterbase, there exists an $A_0 \in F$ such that $A_0 \subset \bigcap_{i=1}^n A_{a(x_i)}$. Hence, $A_0 \cap \overline{V(x_i)} = \emptyset$, $1 \le i \le n$, which implies $A_0 \cap (\bigcup_{i=1}^n \overline{V(x_i)}) = A_0 \cap X = \emptyset$, contradicting the essential fact that $A_0 \ne \emptyset$.
 - (iv) \Rightarrow (iii). Each filterbase is contained in a maximal filterbase.
- (iii) \Rightarrow (ii). Let $\{F_a\}$ be a collection of semiclosed sets such that $\bigcap F_a = \emptyset$. Suppose that for every finite subfamily, $\bigcap_{i=1}^n (F_{a_i})^0 \neq \emptyset$. Therefore $F = \{\bigcap_{i=1}^n (F_{a_i})^0 | n \in \mathbb{Z}^+, F_{a_i} \in \{F_a\}\}$ forms a filterbase. By hypothesis, F s-accumulates to some point $x_0 \in X$. This implies that for every semiopen set $V(x_0)$ containing $x_0, F_a^0 \cap \overline{V(x_0)} \neq \emptyset$, for every $a \in \Lambda$. Since $x_0 \not\in \bigcap F_a$ there exists an $a_0 \in \Lambda$ such that $x_0 \not\in F_{a_0}$. Hence, x_0 is contained in the semiopen set $X F_{a_0}$. Therefore,

$$\left(F_{a_0}\right)^0\cap\overline{\left(X-F_{a_0}\right)}=\left(F_{a_0}\right)^0\cap\left(X-\left(F_{a_0}\right)^0\right)=\varnothing,$$

contradicting the fact that F s-accumulates to x_0 .

(ii) \Rightarrow (i). Let $\{V_a\}$ be a semiopen covering of X. Then $\bigcap (X - V_a) = \emptyset$. By hypothesis, there exists a finite subfamily such that $\bigcap_{i=1}^{n} (X - V_{a_i})^0 = \bigcap_{i=1}^{n} (X - \overline{V}_{a_i}) = \emptyset$. Therefore, $\bigcap_{i=1}^{n} \overline{V}_{a_i} = X$, and consequently X is S-closed. \square

THEOREM 3. Each S-closed, first countable, regular space is finite.

PROOF. Let X be an S-closed, first countable, regular space. Suppose, if possible, that X is infinite. Since X is compact, it is not discrete. Thus X has an accumulation point x. Let $\{U_n|n\in N\}$ be a local base at x such that $U_1=X$, U_n is open in X and $\overline{U_{n+1}}\subset U_n$ for each $n\in N$. Let $\{N_k|k\in N\}$ be a family of pairwise disjoint infinite subsets of N (N = the set of positive integers) such that $\bigcup\{N_k|k\in N\}=N$. For each $k\in N$ we set $V_k=\{x\}\cup \bigcup\{\overline{U}_n-\overline{U}_{n+1}|n\in N_k\}$. Then $\{V_k|k\in N\}$ is a semiopen cover of X. If $n\in N$, then $\bigcup\{\overline{V}_k|k\leqslant n\}\neq X$. Thus X is not S-closed and this is a contradiction. \square

COROLLARY. Each S-closed metrizable space is finite.

THEOREM 4. No regular space containing a P-point is S-closed.

PROOF. The proof is omitted, because it is similar to the proof of Theorem

3, but the index set of cardinality \aleph_1 is decomposed into \aleph_1 sets each of cardinality \aleph_1 . \square

COROLLARY. $\beta N - N$ is not S-closed.

PROOF. Assuming the continuum hypothesis, there are *P*-points in $\beta N - N$ (W. Rudin). \square

Since every compact, countable, regular space is metrizable, we have from the corollary to Theorem 3 the following.

COROLLARY. Each infinite, S-closed, regular space is uncountable.

LEMMA. If Y is a regularly closed subset in an S-closed space X, then Y is S-closed.

PROOF. The proof is easy and is thus omitted.

THEOREM 5. Each extremally disconnected, compact space is S-closed.

PROOF. If X is extremally disconnected, then the closure of an open set is an open set. The interior of a semiopen set is dense in it. We consider $\{\overline{U_t^0}|t\in T\}$ instead of given semiopen cover.

COROLLARY. βN is S-closed.

THEOREM 6. If X is a S-closed regular space, then X is extremally disconnected.

PROOF. Suppose that X is not extremally disconnected. Then there exists a regular open set $O \subset X$ such that $\overline{O} - O$ and $X - \overline{O}$ are nonempty. Let $x \in \overline{O} - O$. Then for every neighborhood V of $x, V \cap O \neq \emptyset$. Therefore, $F = \{(V \cap O)\}$ forms a filterbase in \overline{O} . Since \overline{O} is S-closed, F s-accumulates to some point x_0 in \overline{O} . Quite obviously, the filterbase F also converges to x in the usual sense. We claim that $x_0 \not\in \overline{O} - O$; for if it were, then $x_0 \in X - O$ and every member of F would have to intersect X - O, an impossibility. Thus, $x_0 \in O$. There now exists an open set V such that $V \cap O$ and $V \cap O$ but $V \cap O \cap V$. But since $V \cap O \cap V$ but $V \cap O \cap V$ but

THEOREM 7. If X is a Hausdorff S-closed space, then X is extremally disconnected.

PROOF. Although the proof is not identical to that of Theorem 6, it is quite similar and is thus omitted.

COROLLARY. Let X be a regular compact space. Then X is S-closed if and only if X is extremally disconnected.

COROLLARY. The one-point compactifications of discrete spaces are not S-closed spaces.

COROLLARY. Each S-closed, scattered, regular space is finite.

It is well known for a completely regular space X that X is extremally disconnected if and only if βX is extremally disconnected [3, p. 96]. Therefore, we have the following corollaries:

COROLLARY. For a completely regular space X the following are equivalent:

- (i) X is extremally disconnected.
- (ii) βX is extremally disconnected.
- (iii) βX is S-closed.

COROLLARY. For a compact Hausdorff space, the following are equivalent:

- (i) X is extremally disconnected.
- (ii) X is projective.
- (iii) X is S-closed.

Proof. The equivalence of (i) and (ii) are well known.

This last useful corollary allows us to see immediately that βN is a S-closed space, whereas βQ and βR are not. Additionally, we see that $\beta Q - Q$ is not S-closed since it is not compact, and $\beta R - R$ is not S-closed because it is not extremally disconnected.

I would like to thank Professor Rastislav Telgarsky for his invaluable suggestions in preparing this manuscript.

REFERENCES

- 1. S. Gene Crossley and S. K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci. 22 (1971), 123-126.
 - 2. _____, Semi-topological properties, Fund. Math. 74 (1972), no. 3, 233-254. MR 46 #846.
- 3. Leonard Gillman and Meyer Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 22 #6994.
- 4. Norman Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41. MR 29 #4025.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ARKANSAS, FAYETTEVILLE, ARKANSAS 72701