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ON 77-CLOSED AND MINIMAL HAUSDORFF SPACES
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Abstract.   In this article, characterizations of //-closed and minimal

Hausdorff spaces are given along with some relating properties.

1. Introduction. Letting § denote a class of topological spaces containing as

a subclass the Hausdorff completely normal and fully normal spaces, Profes-

sors L. L. Herrington and P. E. Long, in a recent paper [2], gave the following

characterization of 77-closed spaces: A Hausdorff space Y is 77-closed if and

only if for every space X in class S, each g: X -* Y with a strongly-closed

graph is weakly-continuous. In §3 of this paper we improve upon the

sufficiency of this theorem by establishing that a Hausdorff space Y is 77-

closed if for every space X in class S, each bijection g: X -> Y with a strongly-

closed graph is weakly-continuous.

Also, for a set X and function g: X -* X, we let F(g) denote the set of fixed

points of g (i.e. £(g) = [x G X: x = g(x)}) and prove the following of our

main theorems in §3.

(*) A Hausdorff space (A', t) is 77-closed if and only if for each topology t*

on X with (X,r*) in class S for which the identity function i: (X,t*) -* (X,t)

has a strongly-closed graph, £(g) is closed in X for each bijection g: (X, t* )

-* iX, t) with a strongly-closed graph.

(**) A Hausdorff space (X, t) is 77-closed if and only if for each topology t*

on X with (X,t*) in class S for which the identity function ;': (X, r*) -* (X,t)

has a strongly-closed graph, F(g) = X whenever F(g) is dense in X and

g: (X,t*) -» (X,t) has a strongly-closed graph.

In [3], Professors Herrington and Long have proved the following theorem:

Let g: X -» Y be a function and let Y be minimal Hausdorff. If g has a

strongly-closed graph, then g is continuous.

In §4 of this paper, we prove as another of our main results the following

strong sufficiency to their theorem.

(***) A Hausdorff space Y is minimal Hausdorff if for every space X in class

§, each bijection g: X -* Y with a strongly-closed graph is continuous.

In §5, we offer some examples.
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2. Preliminaries. We denote by cl [K] the closure of a subset K of a

topological space.

2.1. Definition [6]. A point x is in the 0-closure of a subset K of a space if

each open subset V of the space with x G V satisfies K n cl [ V] # 0. In this

case we write x E 0-el[K].

2.2. Definition [6]. A point x in a space is in the O-adherence of a filterbase

"¥ on the space if x E 0-cl[F] for each F G %. In this case we will sometimes

say that the filterbase % 0-adheres to x and use the notation x E 9-adh GllS.

2.3. Definition [4]. A function g: X -* Y is weakly continuous if for each

x G X and each fF open in Y about g(x), there exists a F open in X about jc

withg(F) C cl[W}.

We prove the following theorem which we use later in the paper.

2.1. Theorem. A function g: X —* Y is weakly-continuous if and only if

g(cl [K]) C 0-cl[giK)]for each K C X.

Proof. Necessity. Let y G g(cl [K]) where K C X and g: X ->■ Y is weak-

ly-continuous. Let x E cl [K] with gLx) = ^ and let Wbe open about y. There

is a F open about x satisfying g{V) C cl [W]. So

0 * g(K n K) c g(F) n g{K) c cl [if] n g{K)

and the necessity is proved.

Sufficiency. Suppose g: X —> Y satisfies the inclusion of the theorem, let

x E X and let W be open in Y about g{x). Then W n 0-cl[g(.Y) - cl [IF]]

= 0. Consequently, g(x) G 0-cl[g{X - g"'(cl [IF]))]. Thus

g{x) $ g{d[X - g-]ic\[W])})    and    x E cfLY - g-'(cl [W])].

This implies that there is a K open about x satisfying V C g~'(cl [W]) and

the proof is complete.

2.4. Definition [2]. A function g: X -* Y has a strongly-closed graph if for

each {x,y) & G{g), the graph of g, there exist open sets V C X and IF C Y

containing x andy, respectively, such that {V X cl [W]) n G(g) = 0.

We give without proof the following theorem which we use in the sequel.

2.2. Theorem. A function g: X -» Y has a strongly-closed graph if and only if

{six)} = n2ö-cl[g(K)]/oA- each x G X and each {some) open set base 2 at x.

2.5. Definition. If x0 is a point in a space X and % is a filterbase on X, then

{A C X: x0 E X — A or F U {x0} C A for some F G 6llS} is a topology on X

which will be called the topology on X associated with x0 and %. X equipped

with this topology will be called the space associated with x0 aAici %.

The space associated with a filterbase on a space and a point x0 in the space

will be used frequently in this paper. The following result is easily proved.

2.3. Theorem. Let X be a space, let x0 E X and let % be a filterbase on X

which has an empty intersection on X — {x0}. The space X associated with x0 and

% is in class S.
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3. 77-closed spaces. We use the following characterization of 77-closed

spaces.

3.1. Definition [6]. A Hausdorff space is H-closed if each filterbase on the

space ^-adheres to some point in the space.

The sufficiency of our next theorem improves upon the sufficiency of the

main result in [2]. We also give a different proof of the necessity of that main

result based on the characterization of weakly-continuous functions in Theo-

rem 2.1 above.

3.1. Theorem. A Hausdorff space Y is H-closed if and only if for every space

X in class §, each bijection g: X —> Y with a strongly-closed graph is weakly-

continuous.

Proof. Strong necessity [2]. Let X be any space, let Y be 77-closed, let

g: X -» Y have a strongly-closed graph and let K C X. For y E g(c\ [K]),

choose a: G cl [K] with g(x) = y and let 2 be an open set base at x. Then

<¥ = [g(V) n giK): V E 2} is a filterbase on Y. Consequently, 0-adh<¥

7* 0. Furthermore, 9-adh% C [g(x)) n 0-cl [giK)] by the properties of En-

closure and Theorem 2.2 above (since g has a strongly-closed graph).

Sufficiency. Let Y be Hausdorff, let x0 G Y and suppose % is a filterbase on

Y which does not 0-adhere to any point in Y — {x0}. Let X = Y be the space

associated with x0 and sliS. X is in class § by Theorem 2.3. Let i: X -* Y be the

identity function. If x =fc y and x ¥= x0, choose W open in Y about y with

x £ cl \W\. Then {x} is open in X and ({x} X cl [W]) n G(i) = 0. If

x ¥= y and x = x0 then y ¥= x0, so there is an £ G ^ and W open about y

satisfying x0 G cl[W] and £ n cl [W] = 0. £ U {x0} is open in X and

((£ U {x0}) X cl [IT]) D G(i) = 0. We have proved that i has a strongly-

closed graph. Thus, i is weakly-continuous at x0 and by Theorem 2.1 we

conclude that ¿(cl [£]) C 0-cl [£] for each £ G <¥. Since x0 E cl [£] for each

£ G s¡¡¡, the proof is complete.

We move now to two of our main results.

3.2. Theorem. A Hausdorff space (A, t) is H-closed if and only if for each

topology t* on X with (A,t*) in class S for which the identity function

i: (A, t ) —> (X,t) has a strongly-closed graph, Fig) is closed in X for each

bijection g: iX, t*) -» (A", t) with a strongly-closed graph.

Proof. Strong necessity. Let (X, t) be 77-closed and let t* be any topology

on X for which i: (A,t*) —> (X,t) has a strongly-closed graph. Let g: (A,t*)

-* (A", t) be any function with a strongly-closed graph and let v E cl [£(g)]; g

is weakly-continuous from Theorem 3.1. If g(v) ^ v, there are open sets

V G t* and W E r with (v,g(v)) G Kx W and (F X cl [If]) n G(i) = 0.

This derives from the fact that / has a strongly-closed graph. Since g is weakly-

continuous, there is an A E t* with v E A and g(A) C cl [W7]. K n A

E t* and v E V !~) A; g(V n ^) C cl [H7], so there is no x E V n A satis-

fying g(x) = x. This contradiction establishes the necessity.
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Sufficiency. Suppose ^ is a filterbase on {X, t) which does not 0-adhere to

any point in X. Choose x0 G X and let t* be the topology on X associated

with xQ and GUS. Using the same proof as that of the sufficiency of Theorem 3.1,

{X, t* ) is in class S and the identity function i: iX, r* ) -* {X, t) has a strongly-

closed graph. Choose y0 E X - {x0} and define g: {X,t*) -* (X,t) by g{x0)

= y0, g{y0) = x0 and g{x) = x otherwise; g is a bijection and we show that

g has a strongly-closed graph. Let {x,y) E {X X Y) - G{g). If x # x0,

choose W E t with.y G Wand g{x) G cl [W]. Then {{x} X cl [W]) D G{g)

= 0. If x = x0, y # y0; so we may choose an F G ^ilí and a IF open about

y satisfying

{x0}U {cl[W} fl (FU {x0,y0})) = {xQ};

((FU {x0})Xcl[lF]) n G{g) = 0.

This completes the demonstration that g has a strongly-closed graph. We see

easily that F{G) = X — {x0,y0} which is not r*-closed. This contradiction

completes the proof.

3.3. Theorem. A Hausdorff space {X,r) is H-closed if and only if for each

topology t* OAi X with {X,t*) in class S for which the identity function

i: {X,r*) -* {X, t) has a strongly-closed graph, F{g) = X whenever F{g) is

dense in X and the function g: {X,t*) -* {X,t) has a strongly-closed graph.

Proof. Strong necessity. In Theorem 3.2 we have found that for any

topology t* on X for which the identity function i: {X,t*) -* {X,f) has a

strongly-closed graph, F{g) is closed for any function g: {X, t*) —* {X,t) with

a strongly-closed graph. So, if F{g) is dense in (X, t*), we have F(g) = X.

Sufficiency. We follow the proof of the sufficiency of Theorem 3.2 to the

point immediately preceding the definition of g. Choose y0 E X — {x0} and

define g: (X,t*) -* (X,t) by g(x) = x if x ¥= x0, and g(x0) = y0- Using an

argument similar to that in the proof of the sufficiency of Theorem 3.2 we can

see that g has a strongly-closed graph. Then F(g) — X — {x0} is dense in X, a

contradiction which completes the proof..

4. Minimal Hausdorff spaces. See [1] for a survey of minimal topological

spaces. In this paper we use the following characterization of minimal

Hausdorff spaces as a primitive.

4.1. Definition [3]. A Hausdorff space is minimal Hausdorff if each

filterbase on the space with at most one 0-adherent point is convergent.

Theorem 7 of [3] provides that a function into a minimal Hausdorff space

must be continuous if the function has a strongly-closed graph. In [5], it is

proved that a weakly-continuous function into a Hausdorff space has a closed

graph. The following easily established theorem is analogous to the result in

[5] and enables us to see that if a space is minimal Hausdorff the class of

continuous functions into the space coincides with the class of functions into

the space with strongly-closed graphs.
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4.1. Theorem. If Y is Hausdorff and g: X —> Y is continuous, then g has a

strongly-closed graph.

4.2. Theorem. Let Y be minimal Hausdorff. Then g: X —> Y is continuous if

and only if g has a strongly-closed graph.

In our last theorem and the final of our main results, we give a strong

sufficiency to Theorem 7 of [3]; we also give a different proof of Theorem 7

than that in [3].

4.3. Theorem. A Hausdorff space Y is minimal Hausdorff if and only if for

each space X in class §, each bijection g: X —> Y with a strongly-closed graph is

continuous.

Proof. Strong necessity [3]. Let Y be minimal Hausdorff, let X be any space,

let g: X -* F be any function with a strongly-closed graph and let K C X. Let

y E g(cl [K]); choose x E cl [K] with g(x) = y and let S be an open set base

at x. Then

n9-d[giv)ngiK)] = {gix)}

since <¥ = [g(V) n g(K): V E 2} is a filterbase on Y, g has a strongly-

closed graph and Y is 77-closed. Since Y is minimal Hausdorff, we have

% -» y. Thus, for any W open in Y about y, there is a V E 2 satisfying

g(V) n giK) C W. Consequently, W n giK) ¥= 0 and.y G cl [giK)].

Sufficiency. Let % be a filterbase on Y with at most one (9-adherent point x0.

Let A = Y be the space associated with x0 and % and let i: X -* Y be the

identity function. By means of the argument used in the proof of the

sufficiency of Theorem 3.1, we see that /' has a strongly-closed graph. Thus / is

continuous and if W is open in Y about x0, there is an £ G % with FEW.

Therefore, % —* x0 and the proof is complete.

5. Some examples. In this section, we give some examples to indicate some

limitations on the weakening of hypotheses in the theorems in this paper. By

way of notation, we let TV denote the set of positive integers. For each k E TV,

we let Z(k) = [n E TV: n > k), E(k) = {k + 1/2«: « G TV}, and Oik) = {k

+ 1/(2« - 1): n E TV}.

5.1. Example. The hypothesis cannot be weakened to "closed graph" in either

Theorem 3.1 or Theorem 4.3. Let

00 00

y = {-1,0} U   U £(A:) U   U Oik) U TV
k=\ A:=l

with the topology generated by the following collection of sets as base: the

subspace topology induced on U£°= xEik) U (Jkx'=xOik) U TV by the usual

topology of the reals along with the collection of all sets of the form

{0} U Uk>mEik) and {-1} U Uk>mOik), where m G TV. Let A = Y with

the topology associated with 1 and the filterbase <¥ = {Z(k): A: G TV}, y is
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minimal Hausdorff and X is in class §. The identity function /: X -» Y has a

closed graph but is not weakly-continuous at x = 1. G(i) is not strongly-

closed since {V X cl [W]) n G{i) ¥= 0 for any V open about 1 and W open

about 0.

5.2. Example. The hypothesis cannot be weakened to "the identity function

i: {X,t*) -* (X,t) has a closed graph" in either Theorem 3.2 or Theorem 3.3. Let

Y = {0} U U£L>F(/c) U N with the subspace topology from Y in Example

5.1. Let X = Y he the space associated with 1 and the filterbase % in Example

5.1. Then X is in class §, Y is //-closed and the identity function /: X -* Y has

a closed graph. Let g: A' —> F be defined by g(l) = 0, g(0) = 1 and g{x)

= x otherwise. Then g is a bijection and has a strongly-closed graph. However

F{g) = X - {0,1} is not closed in X. Now, let h: X -> Y he defined by

h{x) = x if x ¥= 1, and ai(1) = 0. Then ai has a strongly-closed graph and

F{h) = X — (1} which is dense in X.

5.3. Example. The hypothesis cannot be weakened to "g: {X, r*) -* {X,t) with

a closed graph" in either Theorem 3.2 or Theorem 3.3. Let Y be the space in

Example 5.2 and let X = Y be the space associated with 0 and the filterbase

<¥ from Example 5.1. The identity function /': X -> Y has a strongly-closed

graph. Let g: X -* y be defined by g(0) = 1, g(l) = 0 and g{x) = x other-

wise. Define A: A" -» F by A(x) = x if x # 0, and ¿(0) = 1. Then g and ai

have closed graphs which are not strongly-closed. F{g) = X — {0,1} which is

not closed in X and F{h) = X - {0} which is dense in X.

5.4. Example. "Weakly-continuous" cannot be replaced by "continuous" in

Theorem 3.1. In Example 5.2, the function g: X —» Y is a bijection with a

strongly-closed graph; g is not continuous at x = 1.
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