ON H-CLOSED AND MINIMAL HAUSDORFF SPACES

JAMES E. JOSEPH

ABSTRACT. In this article, characterizations of *H*-closed and minimal Hausdorff spaces are given along with some relating properties.

1. Introduction. Letting S denote a class of topological spaces containing as a subclass the Hausdorff completely normal and fully normal spaces, Professors L. L. Herrington and P. E. Long, in a recent paper [2], gave the following characterization of H-closed spaces: A Hausdorff space Y is H-closed if and only if for every space X in class S, each $g: X \to Y$ with a strongly-closed graph is weakly-continuous. In §3 of this paper we improve upon the sufficiency of this theorem by establishing that a Hausdorff space Y is H-closed if for every space X in class S, each bijection $g: X \to Y$ with a strongly-closed graph is weakly-continuous.

Also, for a set X and function $g: X \to X$, we let F(g) denote the set of fixed points of g (i.e. $F(g) = \{x \in X: x = g(x)\}$) and prove the following of our main theorems in §3.

- (*) A Hausdorff space (X, τ) is *H*-closed if and only if for each topology τ^* on X with (X, τ^*) in class S for which the identity function $i: (X, \tau^*) \to (X, \tau)$ has a strongly-closed graph, F(g) is closed in X for each bijection $g: (X, \tau^*) \to (X, \tau)$ with a strongly-closed graph.
- (**) A Hausdorff space (X, τ) is *H*-closed if and only if for each topology τ^* on X with (X, τ^*) in class S for which the identity function $i: (X, \tau^*) \to (X, \tau)$ has a strongly-closed graph, F(g) = X whenever F(g) is dense in X and $g: (X, \tau^*) \to (X, \tau)$ has a strongly-closed graph.
- In [3], Professors Herrington and Long have proved the following theorem: Let $g: X \to Y$ be a function and let Y be minimal Hausdorff. If g has a strongly-closed graph, then g is continuous.
- In §4 of this paper, we prove as another of our main results the following strong sufficiency to their theorem.
- (***) A Hausdorff space Y is minimal Hausdorff if for every space X in class S, each bijection $g: X \to Y$ with a strongly-closed graph is continuous.

In §5, we offer some examples.

Received by the editors March 1, 1976.

AMS (MOS) subject classifications (1970). Primary 54D30, 54D25; Secondary 54C10.

Key words and phrases. H-closed spaces, minimal Hausdorff spaces, functions with closed

- 2. **Preliminaries.** We denote by cl[K] the *closure* of a subset K of a topological space.
- 2.1. DEFINITION [6]. A point x is in the θ -closure of a subset K of a space if each open subset V of the space with $x \in V$ satisfies $K \cap \operatorname{cl}[V] \neq \emptyset$. In this case we write $x \in \theta$ -cl[K].
- 2.2. DEFINITION [6]. A point x in a space is in the θ -adherence of a filterbase \mathfrak{V} on the space if $x \in \theta$ -cl[F] for each $F \in \mathfrak{V}$. In this case we will sometimes say that the filterbase \mathfrak{V} θ -adheres to x and use the notation $x \in \theta$ -adh \mathfrak{V} .
- 2.3. DEFINITION [4]. A function $g: X \to Y$ is weakly continuous if for each $x \in X$ and each W open in Y about g(x), there exists a V open in X about x with $g(V) \subset \operatorname{cl}[W]$.

We prove the following theorem which we use later in the paper.

2.1. THEOREM. A function $g: X \to Y$ is weakly-continuous if and only if $g(\operatorname{cl}[K]) \subset \theta\operatorname{-cl}[g(K)]$ for each $K \subset X$.

PROOF. Necessity. Let $y \in g(\operatorname{cl}[K])$ where $K \subset X$ and $g: X \to Y$ is weakly-continuous. Let $x \in \operatorname{cl}[K]$ with g(x) = y and let W be open about y. There is a V open about x satisfying $g(V) \subset \operatorname{cl}[W]$. So

$$\emptyset \neq g(V \cap K) \subset g(V) \cap g(K) \subset \operatorname{cl}[W] \cap g(K)$$

and the necessity is proved.

Sufficiency. Suppose $g: X \to Y$ satisfies the inclusion of the theorem, let $x \in X$ and let W be open in Y about g(x). Then $W \cap \theta$ -cl $[g(X) - \text{cl}[W]] = \emptyset$. Consequently, $g(x) \notin \theta$ -cl $[g(X - g^{-1}(\text{cl}[W]))]$. Thus

$$g(x) \notin g(\operatorname{cl}[X - g^{-1}(\operatorname{cl}[W])])$$
 and $x \notin \operatorname{cl}[X - g^{-1}(\operatorname{cl}[W])]$.

This implies that there is a V open about x satisfying $V \subset g^{-1}(\operatorname{cl}[W])$ and the proof is complete.

2.4. DEFINITION [2]. A function $g: X \to Y$ has a strongly-closed graph if for each $(x,y) \notin G(g)$, the graph of g, there exist open sets $V \subset X$ and $W \subset Y$ containing x and y, respectively, such that $(V \times \operatorname{cl}[W]) \cap G(g) = \emptyset$.

We give without proof the following theorem which we use in the sequel.

- 2.2. THEOREM. A function $g: X \to Y$ has a strongly-closed graph if and only if $\{g(x)\} = \bigcap_{\Sigma} \theta\text{-cl}[g(V)]$ for each $x \in X$ and each (some) open set base Σ at x.
- 2.5. DEFINITION. If x_0 is a point in a space X and $\mathfrak V$ is a filterbase on X, then $\{A \subset X \colon x_0 \in X A \text{ or } F \cup \{x_0\} \subset A \text{ for some } F \in \mathfrak V\}$ is a topology on X which will be called the topology on X associated with x_0 and $\mathfrak V$. X equipped with this topology will be called the space associated with x_0 and $\mathfrak V$.

The space associated with a filterbase on a space and a point x_0 in the space will be used frequently in this paper. The following result is easily proved.

2.3. THEOREM. Let X be a space, let $x_0 \in X$ and let $\mathfrak V$ be a filterbase on X which has an empty intersection on $X - \{x_0\}$. The space X associated with x_0 and $\mathfrak V$ is in class \S .

- 3. *H*-closed spaces. We use the following characterization of *H*-closed spaces.
- 3.1. Definition [6]. A Hausdorff space is *H-closed* if each filterbase on the space θ -adheres to some point in the space.

The sufficiency of our next theorem improves upon the sufficiency of the main result in [2]. We also give a different proof of the necessity of that main result based on the characterization of weakly-continuous functions in Theorem 2.1 above.

3.1. Theorem. A Hausdorff space Y is H-closed if and only if for every space X in class S, each bijection $g: X \to Y$ with a strongly-closed graph is weakly-continuous.

PROOF. Strong necessity [2]. Let X be any space, let Y be H-closed, let $g: X \to Y$ have a strongly-closed graph and let $K \subset X$. For $y \in g(\operatorname{cl}[K])$, choose $x \in \operatorname{cl}[K]$ with g(x) = y and let Σ be an open set base at x. Then $\mathfrak{V} = \{g(V) \cap g(K): V \in \Sigma\}$ is a filterbase on Y. Consequently, θ -adh $\mathfrak{V} \neq \emptyset$. Furthermore, θ -adh $\mathfrak{V} \subset \{g(x)\} \cap \theta$ -cl [g(K)] by the properties of θ -closure and Theorem 2.2 above (since g has a strongly-closed graph).

Sufficiency. Let Y be Hausdorff, let $x_0 \in Y$ and suppose $\mathfrak V$ is a filterbase on Y which does not θ -adhere to any point in $Y - \{x_0\}$. Let X = Y be the space associated with x_0 and $\mathfrak V$. X is in class S by Theorem 2.3. Let $i: X \to Y$ be the identity function. If $x \ne y$ and $x \ne x_0$, choose W open in Y about y with $x \notin \operatorname{cl}[W]$. Then $\{x\}$ is open in X and $(\{x\} \times \operatorname{cl}[W]) \cap G(i) = \emptyset$. If $x \ne y$ and $x = x_0$ then $y \ne x_0$, so there is an $F \in \mathfrak V$ and W open about y satisfying $x_0 \notin \operatorname{cl}[W]$ and $F \cap \operatorname{cl}[W] = \emptyset$. $F \cup \{x_0\}$ is open in X and $((F \cup \{x_0\}) \times \operatorname{cl}[W]) \cap G(i) = \emptyset$. We have proved that i has a strongly-closed graph. Thus, i is weakly-continuous at x_0 and by Theorem 2.1 we conclude that $i(\operatorname{cl}[F]) \subset \theta$ -cl [F] for each $F \in \mathfrak V$. Since $x_0 \in \operatorname{cl}[F]$ for each $F \in \mathfrak V$, the proof is complete.

We move now to two of our main results.

3.2. THEOREM. A Hausdorff space (X,τ) is H-closed if and only if for each topology τ^* on X with (X,τ^*) in class S for which the identity function $i: (X,\tau^*) \to (X,\tau)$ has a strongly-closed graph, F(g) is closed in X for each bijection $g: (X,\tau^*) \to (X,\tau)$ with a strongly-closed graph.

PROOF. Strong necessity. Let (X, τ) be H-closed and let τ^* be any topology on X for which $i: (X, \tau^*) \to (X, \tau)$ has a strongly-closed graph. Let $g: (X, \tau^*) \to (X, \tau)$ be any function with a strongly-closed graph and let $v \in \text{cl } [F(g)]$; g is weakly-continuous from Theorem 3.1. If $g(v) \neq v$, there are open sets $V \in \tau^*$ and $W \in \tau$ with $(v, g(v)) \in V \times W$ and $(V \times \text{cl } [W]) \cap G(i) = \emptyset$. This derives from the fact that i has a strongly-closed graph. Since g is weakly-continuous, there is an $A \in \tau^*$ with $v \in A$ and $g(A) \subset \text{cl } [W]$. $V \cap A \in \tau^*$ and $v \in V \cap A$; $g(V \cap A) \subset \text{cl } [W]$, so there is no $x \in V \cap A$ satisfying g(x) = x. This contradiction establishes the necessity.

324 J. E. JOSEPH

Sufficiency. Suppose $\mathfrak V$ is a filterbase on (X,τ) which does not θ -adhere to any point in X. Choose $x_0 \in X$ and let τ^* be the topology on X associated with x_0 and $\mathfrak V$. Using the same proof as that of the sufficiency of Theorem 3.1, (X,τ^*) is in class S and the identity function $i\colon (X,\tau^*)\to (X,\tau)$ has a strongly-closed graph. Choose $y_0\in X-\{x_0\}$ and define $g\colon (X,\tau^*)\to (X,\tau)$ by $g(x_0)=y_0, g(y_0)=x_0$ and g(x)=x otherwise; g is a bijection and we show that g has a strongly-closed graph. Let $(x,y)\in (X\times Y)-G(g)$. If $x\neq x_0$, choose $W\in \tau$ with $y\in W$ and $g(x)\notin \operatorname{cl}[W]$. Then $(\{x\}\times\operatorname{cl}[W])\cap G(g)=\emptyset$. If $x=x_0,y\neq y_0$; so we may choose an $F\in \mathcal V$ and a W open about y satisfying

$$\{x_0\} \cup (\operatorname{cl}[W] \cap (F \cup \{x_0, y_0\})) = \{x_0\};$$

 $((F \cup \{x_0\}) \times \operatorname{cl}[W]) \cap G(g) = \emptyset.$

This completes the demonstration that g has a strongly-closed graph. We see easily that $F(G) = X - \{x_0, y_0\}$ which is not τ^* -closed. This contradiction completes the proof.

3.3. THEOREM. A Hausdorff space (X,τ) is H-closed if and only if for each topology τ^* on X with (X,τ^*) in class S for which the identity function $i:(X,\tau^*)\to (X,\tau)$ has a strongly-closed graph, F(g)=X whenever F(g) is dense in X and the function $g:(X,\tau^*)\to (X,\tau)$ has a strongly-closed graph.

PROOF. Strong necessity. In Theorem 3.2 we have found that for any topology τ^* on X for which the identity function $i: (X, \tau^*) \to (X, \tau)$ has a strongly-closed graph, F(g) is closed for any function $g: (X, \tau^*) \to (X, \tau)$ with a strongly-closed graph. So, if F(g) is dense in (X, τ^*) , we have F(g) = X.

Sufficiency. We follow the proof of the sufficiency of Theorem 3.2 to the point immediately preceding the definition of g. Choose $y_0 \in X - \{x_0\}$ and define $g: (X, \tau^*) \to (X, \tau)$ by g(x) = x if $x \neq x_0$, and $g(x_0) = y_0$. Using an argument similar to that in the proof of the sufficiency of Theorem 3.2 we can see that g has a strongly-closed graph. Then $F(g) = X - \{x_0\}$ is dense in X, a contradiction which completes the proof.

- 4. Minimal Hausdorff spaces. See [1] for a survey of minimal topological spaces. In this paper we use the following characterization of minimal Hausdorff spaces as a primitive.
- 4.1. DEFINITION [3]. A Hausdorff space is minimal Hausdorff if each filterbase on the space with at most one θ -adherent point is convergent.

Theorem 7 of [3] provides that a function into a minimal Hausdorff space must be continuous if the function has a strongly-closed graph. In [5], it is proved that a weakly-continuous function into a Hausdorff space has a closed graph. The following easily established theorem is analogous to the result in [5] and enables us to see that if a space is minimal Hausdorff the class of continuous functions into the space coincides with the class of functions into the space with strongly-closed graphs.

- 4.1. THEOREM. If Y is Hausdorff and g: $X \rightarrow Y$ is continuous, then g has a strongly-closed graph.
- 4.2. THEOREM. Let Y be minimal Hausdorff. Then $g: X \to Y$ is continuous if and only if g has a strongly-closed graph.

In our last theorem and the final of our main results, we give a strong sufficiency to Theorem 7 of [3]; we also give a different proof of Theorem 7 than that in [3].

4.3. THEOREM. A Hausdorff space Y is minimal Hausdorff if and only if for each space X in class S, each bijection $g: X \to Y$ with a strongly-closed graph is continuous.

PROOF. Strong necessity [3]. Let Y be minimal Hausdorff, let X be any space, let $g: X \to Y$ be any function with a strongly-closed graph and let $K \subset X$. Let $y \in g(\operatorname{cl}[K])$; choose $x \in \operatorname{cl}[K]$ with g(x) = y and let Σ be an open set base at x. Then

$$\bigcap_{\Sigma} \theta\text{-cl}\left[g(V) \cap g(K)\right] = \{g(x)\}\$$

since $\mathfrak{V} = \{g(V) \cap g(K): V \in \Sigma\}$ is a filterbase on Y, g has a strongly-closed graph and Y is H-closed. Since Y is minimal Hausdorff, we have $\mathfrak{V} \to y$. Thus, for any W open in Y about y, there is a $V \in \Sigma$ satisfying $g(V) \cap g(K) \subset W$. Consequently, $W \cap g(K) \neq \emptyset$ and $y \in \operatorname{cl}[g(K)]$.

Sufficiency. Let $\mathscr U$ be a filterbase on Y with at most one θ -adherent point x_0 . Let X=Y be the space associated with x_0 and $\mathscr U$, and let $i\colon X\to Y$ be the identity function. By means of the argument used in the proof of the sufficiency of Theorem 3.1, we see that i has a strongly-closed graph. Thus i is continuous and if W is open in Y about x_0 , there is an $F\in \mathscr U$ with $F\subset W$. Therefore, $\mathscr U\to x_0$ and the proof is complete.

- 5. Some examples. In this section, we give some examples to indicate some limitations on the weakening of hypotheses in the theorems in this paper. By way of notation, we let N denote the set of positive integers. For each $k \in N$, we let $Z(k) = \{n \in N: n \ge k\}$, $E(k) = \{k + 1/2n: n \in N\}$, and $O(k) = \{k + 1/(2n 1): n \in N\}$.
- 5.1. Example. The hypothesis cannot be weakened to "closed graph" in either Theorem 3.1 or Theorem 4.3. Let

$$Y = \{-1,0\} \cup \bigcup_{k=1}^{\infty} E(k) \cup \bigcup_{k=1}^{\infty} O(k) \cup N$$

with the topology generated by the following collection of sets as base: the subspace topology induced on $\bigcup_{k=1}^{\infty} E(k) \cup \bigcup_{k=1}^{\infty} O(k) \cup N$ by the usual topology of the reals along with the collection of all sets of the form $\{0\} \cup \bigcup_{k \geqslant m} E(k)$ and $\{-1\} \cup \bigcup_{k \geqslant m} O(k)$, where $m \in N$. Let X = Y with the topology associated with 1 and the filterbase $\mathfrak{V} = \{Z(k): k \in N\}$. Y is

326 J. E. JOSEPH

minimal Hausdorff and X is in class S. The identity function $i: X \to Y$ has a closed graph but is not weakly-continuous at x = 1. G(i) is not strongly-closed since $(V \times \operatorname{cl}[W]) \cap G(i) \neq \emptyset$ for any V open about 1 and W open about 0.

- 5.2. Example. The hypothesis cannot be weakened to "the identity function $i: (X, \tau^*) \to (X, \tau)$ has a closed graph" in either Theorem 3.2 or Theorem 3.3. Let $Y = \{0\} \cup \bigcup_{k=1}^{\infty} E(k) \cup N$ with the subspace topology from Y in Example 5.1. Let X = Y be the space associated with 1 and the filterbase \mathfrak{A} in Example 5.1. Then X is in class S, Y is H-closed and the identity function $i: X \to Y$ has a closed graph. Let $g: X \to Y$ be defined by g(1) = 0, g(0) = 1 and g(x) = x otherwise. Then g is a bijection and has a strongly-closed graph. However $F(g) = X \{0, 1\}$ is not closed in X. Now, let $h: X \to Y$ be defined by h(x) = x if $x \ne 1$, and h(1) = 0. Then h has a strongly-closed graph and $F(h) = X \{1\}$ which is dense in X.
- 5.3. Example. The hypothesis cannot be weakened to "g: $(X, \tau^*) \to (X, \tau)$ with a closed graph" in either Theorem 3.2 or Theorem 3.3. Let Y be the space in Example 5.2 and let X = Y be the space associated with 0 and the filterbase \mathfrak{V} from Example 5.1. The identity function $i: X \to Y$ has a strongly-closed graph. Let $g: X \to Y$ be defined by g(0) = 1, g(1) = 0 and g(x) = x otherwise. Define $h: X \to Y$ by h(x) = x if $x \neq 0$, and h(0) = 1. Then g and h have closed graphs which are not strongly-closed. $F(g) = X \{0, 1\}$ which is not closed in X and $F(h) = X \{0\}$ which is dense in X.
- 5.4. Example. "Weakly-continuous" cannot be replaced by "continuous" in Theorem 3.1. In Example 5.2, the function $g: X \to Y$ is a bijection with a strongly-closed graph; g is not continuous at x = 1.

REFERENCES

- 1. M. P. Berri, J. R. Porter and R. M. Stephenson, Jr., A survey of minimal topological spaces, General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968), Academia, Prague, 1971, pp. 93-114. MR 43 #3985.
- 2. L. L. Herrington and P. E. Long, Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), 469-475. MR 51 #1737.
 - 3. ——, Characterizations of C-compact spaces, Proc. Amer. Math. Soc. 52 (1975), 417–426.
- 4. Norman Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46. MR 23 # A3548.
 - 5. T. Noiri, Between continuity and weak-continuity, Boll. Un. Mat. Ital. (4) 9 (1974), 647-654.
- **6.** H. V. Veličko, *H-closed topological spaces*, Mat. Sb. **70(112)** (1966), 98–112; English transl., Amer. Math. Soc. Transl. (2) **78** (1968), 103–118. MR **33** #6576.

DEPARTMENT OF MATHEMATICS, FEDERAL CITY COLLEGE, WASHINGTON, D. C. 20001

Current address: Department of Mathematics, Howard University, Washington, D.C. 20001