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THE DIAMETER OF THE GRAPH OF A SEMIRING

ANASTASE NAKASSIS

Abstract.    In this paper, it is proven that the diameter of the graph of a

semiring with more than two elements does not exceed three.

Introduction. Y. F. Lin and J. S. Ratti [1], [2], [3] studied the graphs of

semirings and conjectured that:

(a) The graph of a semiring that contains more than two elements is

connected.

(b) The diameter of the above-mentioned graph does not exceed three.

Starting from the results they obtained, we are going to prove that both of

these conjectures are correct.

To clarify the terms of this paper, we will first review some basic definitions:

A semiring is a nonempty set equipped with two operations: addition, +,

and multiplication (denoted by juxtaposition), such that addition is associative

and commutative and multiplication associative and distributive across addi-

tion both from the left and the right.

Let R be a semiring, U{R) the set of all proper subsemirings of R, and

G{R) — (U(R),E) the nonoriented graph whose edges are the couples (A, B)

that fulfill the relationship A n B =£ 0 (with the understanding that A and B

are elements of U(R)). G(R) is said to be the graph of R.

The distance between two vertices A,B of a graph, d{A,B), is the number of

edges in a shortest path between A and B. (We define d(A,B) to be 0 if A = B

and +00 if no path joins A to B.) The diameter D(G) of a graph G is the

supremum of d(A, B) when A and B run over the vertices of the graph. We are

going to examine the second conjecture. It is evident that if it is true, so is the

first one.

The diameter of the graph of a semiring. The main results of [ 1 ] and [2] may

be summarized in

Theorem 1. The diameter of G(R) does not exceed 3 if card R > 2 and one of

the following conditions is fulfilled:

(a,) R contains a left unit.

(a2) R contains a right unit.

(b) R is commutative.
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Proof. See [1] and [2].

We shall try to prove that the hypothesis "the diameter of G(R) exceeds 3

and card 7? > 2" is self-contradictory. We shall therefore assume in Lemmas

1-7 that R is a semiring such that the diameter of G(R) exceeds 3 and that

card 7? > 2. In view of Theorem 1, this immediately implies that 7? is not

commutative and that it does not contain a left or right unit. Moreover:

Lemma 1. (a) For any a E R, the semiring (a) that is generated by a is proper

[otherwise, R is commutative].

(b) No element of R fulfills the double equality xR = Rx = R [otherwise R

contains a unit].

(c) For any y and z that belong to R, yR and Rz are subsemirings of R (not

always proper) and their intersection is not void [both contain yz\

Lemma 2. Let d(A,B) > 3. Then either

xR = R and Rx # R for all x E A U B   or

xR # 7? and Rx = R for all x E A U B.

Proof. For any a E A, b E B, the sequences {A,aR, Rb, B) and [A,Ra,bR,

77} are not paths in G(R) since d(A,B) > 3. Using Lemma 1(b), we deduce

that either

(1) aR = bR = 7?, or

(2) Ra = Rb = R.

Suppose that aR = bR = R (case (2) is the dual of (1) and can be treated in

a similar way), then Ra ¥= R and Rb # R. By fixing a and letting b run over

7i, or by fixing b and letting a run over A, we obtain that for any x belonging

to A U B, xR = R and Rx ¥= R.

Since the diameter of G(R) exceeds 3, there is a couple (A, B) such that

d(A, B) > 3. Fix A and B in what follows (Lemmas 3-7) and suppose that for

all x G A U 77, xR — R and Rx ^ R (by Lemma 2, this may be done

without loss of generality). Then,

Lemma 3. For any a E A and b E B, Ra + Rb = R.

Proof. Let (a , b ) be the subsemiring of 7? which is generated by a and

b2. By hypothesis, d(A,B) > 3. Therefore, {A,(a2,b2),B} cannot be a path.

Thus, (a2,b2) = R.On the other hand, inspection of the elements of (a2,b2)

shows that (a2,b2) is a subset of Ra U Rb U (Ra + Rb). So Ra U Rb

U (Ra + Rb) = R.

If a belonged to Ra, R would contain a left unit (by hypothesis, aR = R);

if a belonged to Rb, d(A,B) would be at most 2, since {A,Rb, B} would be a

path of length two (by hypothesis, Rb # R). So a belongs to Ra + Rb and

Ra E Ra + Rb. Similarly, Rb Q Ra + Rb. So, Ra + Rb = R. Let us choose

once and for all an a E A and ab E A which will remain fixed in Lemmas

4-7.
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Lemma 4. Let

Ca = {z\(z + Ra) n <a> * 0),    Cb = {z\(z + Rb) n <£-> # 0}.

Then, Ca = Cb = R.

Proof. Ca and Cb are subsemirings of R. Indeed, if z and z' are in Ca,

z + ra = /a(cî)    and   z' + r'a = /i'(a)

for some a- and a-' in R, p(a) and //(a) in <a>. Then

(z + z') + (r + r')a = p{a) + p'{a)

and since (a) is commutative,

zz' + {zr' + rp'{a))a = z{d + r'a) + rp'(a)a = zp'(a) + rp'(a)a

= (z + ra)p'(a) = p{a)p'{a).

Consequently, z + z and zz belong to Ca, which is therefore a subsemiring of

R. By the same argument, we prove Cb to be a subsemiring. Since Ra + Rb

= Rb + Ra = R, a = ca + db, b = c'a + d'b, for some c, c', d and d' in R.

Then F¿> n Ca contains db and Fa n Cb contains c'a.

The sequences {A, Ca,Rb, B} and {A,Ra,Cb,B} cannot be paths (d(A,B)

> 3). Therefore, Ca = Cb = R.

Lemma 5. For any x E R, (x} + R = R.

Proof, (x) + F is a subsemiring of F. Since x belongs both to Ca and Cb,

0> + R meets <a> as well as <6>. So if <» + /? # F, {/I, (x) + R, B} would

be a path of length 2, a contradiction.

Lemma 6. R contains an element w such that

(1) x = x + w for all x G R,

(2) xw = wx = w for all x E R.

Proof. Since aR = bR = R for some well-chosen u and i> in F, au = a and

6t/ = b. Then, <a + «> + F ç a + R and <¿> + v) + R Q b + R. Indeed, any

power of (a + u) contains, if developed, a term of the form auu • • • « = a.

Using Lemma 5, we deduce that a + R = b + R = R, and more generally

that

a' + R = b-' + R = R    for any i = 1,2,... and/ = 1,2,_

Since a + R = R, there is a w such that a + w = a. It is easily seen that

x + w = x for all x G F and that w is therefore unique. Take the relation

a2 + R = R. Then

a   + aw = a(a + w) = a     and    a   + wa = (a + w)a = a .

By virtue of the equality a   + R = R, for all x E R, x + aw = x + wa = x,
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and since w is unique, w = wa = aw. For the same reasons, wb = bw = w.

Since (a ,b ) = R (see Lemma 3), we deduce that wx = xw — w for all

x E R.

Lemma 7. a = w or b = w.

Proof. {A,(a,w},(b,w>,B) is not a path and hence either (a,w) = R or

(b, w) = R. Let <a,w> = 7?. This assumption entails no loss of generality,

since the case (b, w) = 7? can be similarly treated. It is easily seen that

<a, w) = (a) U [w] and since A n B = 0, b does not belong to <a> and

b = w. Since bR = R, R = wR = {w}.

Lemma 7 contradicts our original assumption that card 7? > 2. So:

Theorem 2. When R has more than two elements, the diameter of G(R) does

not exceed three.

Corollary. G(R) is connected if card R > 2.

Remarks. (1) The proof of Theorem 2 may be substantially simplified if 7?

is uncountable or finite.

In the first case, the proof is straightforward. If A and B are two proper

subsemirings of 7?, either A n B ¥= 0 and d(A,B) is 0 or 1, or A (~l B = 0.

In the latter case, let a E A and b E B. Then (a, b} is countable or finite.

Hence (a,b) ¥= R and {A, (a,b}, B] is a path of length 2.

If R is finite, every subsemiring of R contains one or more elements

satisfying the double equality x   = x + x = x.

Indeed, let D be a subsemiring of R. Consider an element z in D and the

sequence {nz}. Since D is finite, there exist positive integers k and k' such that

kz = (k + k')z. Let y = kk'z. Then we may prove that^ + y = y. (Write the

first y as the sum of k' terms, each equal to kz, and the second as the sum of

k terms, each equal to k'z. Then use the associative law to eliminate the last k

terms.)

We also remark that if n is an integer greater than 1,

yH+yn=yn-xiy+y)=yH-xy=yn.

Consider now the sequence {yn}. Since D is finite for some positive integers i

and/, y = yi+j. Let d = yij. Then

d2 = yVyV = y . . .y'yJ . . •/ = y" . . ./ = / « ¿

and d + d = d (d is a power of y).

In virtue of the proposition we just proved, immediately after Lemma 2, we

could conclude that if xR = R for all elements of a subsemiring A, R has a

left unit since A contains at least one multiplicative idempotent. We would

therefore show that our assumption was contradictory without resorting to the

subsequent lemmas.
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(2) In view of what was proven in this paper, one might raise the following

question:

Given a nonoriented graph G, under which conditions on G would it be

possible to find a semiring R such that G = G(R) ?

And more specifically:

If D(G) < 3, can we find a semiring R such that G = G(R) ?

The answer to the second question is negative.

To prove this, we consider a semiring R and two proper semirings of R, A

and B, with a nonempty intersection C. Then every subsemiring of R which

meets C meets A and B as well. Hence, if G = G(R) for some semiring R, G

must satisfy the following property:

For every pair of adjacent vertices a and b, there is a vertex c (possibly equal

to a or to b) such that for every vertex d which is adjacent to c, either

d = a, d = b, or d is adjacent to both a and b.

In the figure below are shown two (of the infinitely many) finite graphs

which do not satisfy this property. Hence neither is the graph of any semiring.

G,:   î>r^<I
a b
9-9

(3) If G(R) is finite, then R is finite. Suppose first that R has no proper

subsemiring. Then, if a E R, <a> = R. Fix a. Since

<a> = (a3) = R,    a = a2p{a),p{a)

being a sum of powers of a.

Let e = ap(a). Then

e   = ap(a)ap(a) = (aap(a))p(a) = ap{a) = e.

Since (e) = 0e} = R and e is a multiplicative idempotent, e = 3ke for some

positive integer k. Let/ = (3ac - l)e. Then

/ + / = (3* - l)e + {3k - l)e = 3ke + {3k - 2)e

= e + (3k- 2)e = {3k - l)e = f

and

f2 = (9A:2 -6k+ l)e = {3k - 2)(3ke) + e

= (3* -2)e + e = (3k - l)e = f.

Since R = </> = {/}, R is finite.

Suppose that we proved that a semiring is finite if it has less than k proper

subsemirings and that R has exactly k. Then all proper subsemirings of R will

be finite. (Each of them is a semiring having less than k proper subsemirings.)
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Now if R is not cyclic, R is the union of its proper subsemirings. In this case,

7? is a finite union of finite sets, hence finite.

Suppose then that R = (a) for some a. We shall prove that R is finite.

Case 1. aR = R.

Since aR = R and R is commutative (R = (a)), R has a unit u. In the

sequence [nu], at least two terms are equal. Indeed, if this is not the case, (u)

as well as <3w> are infinite. Then they cannot be proper subsemirings of 7? and

(u) = (3u) = 7?. Therefore, u E (3u) and u = 2>ku for some positive integer

k, a contradiction.

If ku = (k + m)u, then for all x E R, kx = (k + m)x. Consider the se-

quence {a"}. If there are repetitions, for instance, a' = a'+J, R is finite. Indeed,

all x E R may, in this case, be written as a sum of powers of a in such a way

that:

(a) No exponent exceeds i + j - 1.

(b) No more than ik + m — 1) summands are equal.

Suppose therefore that no two terms are equal in the sequence [a"), and that

c is an element of 7? such that ac = u iaR = R). Then we may not have

repetitions in [cn] and (c) cannot be a proper subsemiring of R since it is

infinite. Therefore, (c) = R and a E (c).

Let a = qic) and suppose that the highest exponent of c in qic) is n*. Then

a" + is a sum of terms, each of which is a power of a with exponent less than

n* + 1. (Multiply both sides of a = qic) by a" +1.) Again, all elements of 7?

may be written as sums of powers of a in such a way that:

(a) No exponent exceeds n   +1.

(b) No more than (k + m - 1) summands are equal.

Case 2.aR¥=R.

Then aR is finite.

Consider the sequence {na}. If there are repetitions, for instance, ka

= (k + m)a, put P = {na\n = \,2---,k + m - 1}. Then R = (a) = P

U aR U (P + aR) and 7? is clearly finite.

Suppose, therefore, that no two terms are equal in [na). Then (na) is infinite

for all n, and therefore cannot be a proper subsemiring of R. So for all n,

(na) = R.

So there is a sequence {(mn,qnia))}, such that if i </, m¡ < m¡, and for all

n: a = mna + aqnia). Indeed, if we know the first k terms of {imn,qnia))}, we

put m = mk + 1. Since a E (ma), a = dma + aqk+xia) for some positive

integer d, and some qk+xia). Put mk + x = dm. Clearly mk + x > mk.

To find mx, we consider (2a). Since a E (2a),

a = 2da + aqx (a)    for some d, qx (a).

We take mx = 2d.

The terms aqn(a) belong to aR and aR is finite. Therefore, for some /' and/,

i </, aq¡(a) = aqj(a). Since
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a = m¡a + aq¡(a)    and    a = m a 4- aqfa),

((mj — mt) + l)a = (aai^ - m¡)a + a = (aai - aai()íj + AAi(a + aq¡(a)

= aai, a + aqj(a) = a.

So there are repetitions in {na} and R is finite.

In view of Cases 1 and 2, it is apparent that by induction on the number of

proper subsemirings of R, we may prove that if G(R) is finite, R is finite.

(4) Let G(R) he finite. Then R is finite and by Remark 1, all its subsemirings

contain idempotents (we use the term "idempotent" for elements which are

idempotents for both operations in R). In this case, if we know G(R), we know

the distribution of idempotents in the subsemirings of R as well as the total

number of idempotents contained in R. Indeed, A n B ¥= 0, if and only if A

and B have one or more idempotents in common. (If A n B is nonvoid, it is

a subsemiring of R and it contains at least one idempotent.) On the other

hand, a subsemiring C contains exactly one idempotent, if and only if, for all

subsemirings A and B of R, the relationships A D C =£ 0 and B D C ¥= 0

imply A n B # 0.

Therefore, If we know G(R) we may

(a) find the vertices corresponding to proper subsemirings which contain

exactly one idempotent,

(b) count the idempotents in R,

(c) find the idempotents contained in every subsemiring of R,

(d) prove in certain cases that R is not commutative.

For example: If u, v are idempotents of R, we may find through G(R) all

idempotents contained in (u,v}. If (u,v) has more than six idempotents, R

cannot be commutative. For suppose it were. Then since u = 2u — u, v

= 2v = v and uv = vu, (u,v) has at most seven elements: u, v, u + v, uv,

u + uv, v + uv, u + v + uv, all of which, therefore, must be idempotents. On

the other hand, (u + v) = u + v + uv and (u + v) = u + v, hence (u, v) has

at most six idempotents, a contradiction.
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