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CONVEXITY OF INTEGRAL MEANS

OF SUBHARMONIC FUNCTIONS

JANG-MEI G. WU'

Abstract. We study the convexity of integral means of subharmonic

functions and the convexity of the variations of harmonir functions over

certain level curves of some other harmonic functions in  ae plane.

On an annulus, the mean value of a subharmonic function over circles of

radius a- is a convex function of log r. The purpose of the present note is to

extend this result to domains of arbitrary connectivity. The main problem is

to devise a suitable counterpart for log r, and this is dealt with by observing

that the harmonic measure of either boundary circle of an annulus is a linear

function of log r. In the case of a general domain G, our scheme is to start

with a harmonic function aai on G and form as analogues of the integral

means the integrals with respect to the conjugate aai* of aai over certain level

curves of aai. This results in a generalization of the classical convexity

property of the integral means of a subharmonic function, comprising our

main theorem.

In what follows, G is a domain in the plane, aai is a harmonic function on G

such that {e < aai < 1 - e} is compact whenever 0 < e < \ and aai* denotes

the (multiple-valued) harmonic conjugate of aai. Further la denotes the

oriented level curves AAi = a(0<a<l)on which aai* increases except at the

zeros of the gradient of aai, and Vu(a) denotes the sum of total variations of a

given harmonic function u over the components of la. We remark that aai may

take values outside (0, 1) and our choice of the numbers 0 and 1 is for

simplicity.

Theorem 1. Let u be a harmonic function on {0 < aai < 1} and v a

subharmonic function on {0 < aai < 1}, and denote by u* the harmonic con-

jugate of u. Then, for 0 < a < 1,

(1) // du* is independent of a;

(2) fjU dm* = A a + B, where A and B are constants, with A given by the

integral in (1);

(3) /, v dm* is a convex function of a;
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(4) Vu(a) is continuous;

(5) Vu(a) is convex over intervals of values of a such that la does not pass

through zeros of the gradient of m.

In this, our main theorem, it should be observed that the integral in (3)

actually represents a sort of mean-value of the subharmonic function v over

la, in view of the fact that the integral of dm* over la is constant, by (1). We

remark also that Vu(a) is not convex over 0 < a < 1, in general, as we shall

later show by example. The remainder of the paper is devoted primarily to

proving Theorem 1, and the key to the proof lies in the fact that the level lines

la subdivide {0 < m < 1} into doubly connected regions, which can then by

analyzed by conformai mappings onto annuli.

1. The case of doubly connected domains with piecewise analytic boundary

curves.

Lemma 1. Suppose G = {R < |z| < 1}, 0 < R < \,and u is harmonic on G

and continuous on \z\ = 1. Then the variation of u on \z\ = r tends to the

variation of u on \z\ = 1 as r —> 1.

Proof. We use V(r) to denote the variation of u on |z| = r.

Writing V(\) as the limit of suitable sums and noting that u(re'9) -* u(e'e)

uniformly as r —> 1, we have lim infr->1 V(r) > V(X).

We shall show lim sup,^, V(r) < V(\). Let R < R0 < r < 1 and e > 0.

We note that u is of bounded variation on |z| = R0. Fix/, R0 < r < 1. There

exist 0, < $2 < • • ■ < 0« < 0« + i = e\ + 2w sucn that

n

(1) V(r) - e < 2 \u(reie'+>) - u(rew>)\ = w(r).

7-1

Consider the function

n

wiz) = 2 \uize*J+') - u(zew')\

7-1

on 7\0 < |z| < 1; w(z) is subharmonic on R0 < |z| < 1 and continuous on

R0 < |z| < 1. Let M(r) be the maximum of w(z) on |z| = r. By Hadamard's

three-circle theorem we have

log(lA) log(r/Ä0)

Since e is arbitrary, we see from (1) that

log(l/r) log(/-/Ä0)

yv<mnün«°)+w7«¿ "(1)-
Thus lim supr^, V(r) < V(\). (The construction of w(z) is adapted from

Bieberbach and Csillag; see Beckenbach [Lp. 616].)

Lemma 2. Let G = {R < \z\ < 1}, 0 < R < 1 and m be the harmonic

measure of either boundary circle of G. Suppose u, u* and v are as in Theorem
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1; moreover, u and u* can be extended continuously to \z\ — I, v can be

extended upper semicontinuously to \z\ = 1. Then whenever /aÇ{/?<|z|<l}

conclusions (I) to (5) iai Theorem 1 hold.

Proof. It is clear that aai(z) = a log|z| + b, m*(z) = a • arg z + c for some

real constants a, b and c; la is a circle centered at 0 with radius, say, r(a). We

note that a = a log r(a) + b. By the orientation of la we know that

/
dm* = 2vr|a|

In G,

u(z) = d log|z|+ Re/(z)    and   u*{z) = ¿/arg z + Im/(z)

for a single-valued analytic function /(z) on G and a real constant d. Because

u and u* can be extended continuously to |z| = l,/(z) can also be extended

continuously to |z| = 1. Hence the expressions for u and u* in G are also

valid for |z| = 1. Thus, for /„ ç {R < \z\ < 1),

| du* = J du* • sign(a) = 2-nd- sign(a).
Jl„ J\z\ = r(a)

From the above equality, the fact a = a log ria) + b and

u dm* = 27r|a|[c7 log ria) + constant],I-
we conclude (2).

For R < ria) < 1, J|z| = r(a)t; d0 is a convex function of log r(a) and a is a

linear function of log A-(a), hence /, v dm* is a convex function of a.

Continuity of Vu(a) as a function of a for la ç {R < \z\ < 1} follows from

Lemma 1.

i/ i  \      f 3u     ,„        1    f | du
J\z\ = r'a)     dt/ |a|   JlJ   di/

dm*

is a convex function of a, because |3m/3#| is subharmonic in {R < \z\ < 1}.

Corollary. Suppose G is a doubly connected domain with piecewise analytic

boundary curves and every interior point of the analytic arc represents only one

accessible point on the boundary of G. Suppose u, u* and v are as in Theorem 1

aAii/ u and u* can be extended continuously, v can be extended semicontinuously

to a boundary component of G. Then for la in G or in that boundary component,

conclusions (I) to (5) in Theorem 1 remain true.

Proof. Because G is doubly connected with no point-like boundary com-

ponent, there exists a conformai mapping / from a suitably chosen annulus

A(R, 1) to G. See Goluzin [2, p. 208] for the proof of the above fact. For the

following discussion of correspondence of boundaries under conformai map-

ping, the reader is referred to §3, Chapter II of Goluzin [2]. Since all the

points on dG are accessible and every interior point of the analytic arcs on 3(7

represents only one accessible point, / admits a continuous extension to
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{|z| = 1} U {|z| = 7?}, one-to-one except possibly at the pre-images of the

endpoints of the analytic arcs.

Because harmonicity, subharmonicity, total variation and topological prop-

erties are preserved under /, we conclude this corollary by Lemma 2.

2. Proof of the main theorem. Let / = m + im*, g = f = mx - im , Z =

(zeros of g in G} (i.e. the zeros of the gradient of m) and S = {m(z):

z E Z). Because g has finitely many zeros on each compact subset of G, 5 is

countable and has no limit point in (0, 1). Let a, b be two numbers,

0 < a < b < 1 and (a, b) n S = 0, and F denote the set [a < m < b).

We observe that la (0 < a < 1) is compact. If z0 is on la and n is the

multiplicity of the zero of / — f(z0) at z0 then in a neighborhood of z0, la is

composed of 2n analytic rays from z0, disjoint except at z0. Therefore la has

finitely many components and each component of la is either a closed

analytic Jordan curve or a closed curve composed of analytic Jordan arcs

with end points in Z.

We claim that F is a finite disjoint union of doubly connected domains.

We first consider the case a and b are not in 5. Because la u lb is the

boundary of E and la u lb is disjoint from Z, F has finitely many components

and each component is a domain of finite connectivity. Let D be any

component of E, 37) be the boundary of D being oriented so that D is to the

left of 37) and n be the number of components of 37). We want to show

n = 2. We note that n > 1 from the maximum and minimum principle. Since

m is constant on each component of 97), we have mx dx + my dy = 0 on 37).

Because g has no zero in D, with the aid of the argument principle we have

0=1    — dz = increment of arg g along 37)
JdD  8

= increment of arctan( - my/mx) along 37)

= increment of arctan (dx/dy) along 37)

= -2tt + 2m(n - 1).

Therefore n = 2 and D is doubly connected. In case one or both of a, b is in

S, we may conclude that F is a finite union of doubly connected domains by

observing F = U„{an < m < bn] if an[a and bjb.

If D is a component of E, from the maximum and minimum principle and

the local structure of the level curves, we see that each point on 37) \ Z

represents only one accessible point on 37). If 7)' is another component of E,

we observe that 37) n 37)' is a finite set; this follows from the fact that every

point in the intersection has to be a point in Z.

By applying the Corollary of Lemma 2 to each component of F and noting

that the boundary of a component of £ meets the boundary of some other

component of F at most finitely many points, we conclude that (1) to (5) are

true for a E [a, b]. Recall that S has no limit point in (0, 1) and let a and b

vary, we can easily see that (1), (2), (4) and (5) are true for a G (0, 1).
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We shall prove ),v dm* is convex across points in S. Fix s E S and choose

c, d so that c < s < d and (c, d) n S = {s}. Let t/ be the region {c < aai <

d}; the Dirichlet problem is solvable on U. After approximating v on the

boundary of U by a decreasing sequence of continuous functions and solving

the Dirichlet problem for this sequence of functions, we may apply (2) and

the harmonic majorant property of subharmonic functions to obtain the

convexity of f¡ v dm* at s.

The proof of Theorem 1 is complete.

3. An example. We shall show by example that Vu(a) need not be convex

across points in S.

Let aai(z) be log|z2 - 11 in C \ {1, - 1}, am* be its conjugate and G = {- 1

< aai(z) < 1}. From the Cauchy-Riemann equations, (aai + i'aai*)'(z0) = 0 if

and only if amx(z0) = m (z0) = 0. By a direct computation we see that 0 is the

only point at which (aai + i'aai*)' vanishes. Thus Z = {0} and also 5 = {0}.

For a value a,

/„ = [x + iy: [(x+ l)2+/2][(*- 1)2+/2] = e2"}.

We note that (a) la meets the x-axis at ± Vl + e" when a > 0, at

± Vl ± ett when a < 0, (b) la meets the/-axis at ± ¡Ve" - 1 when a > 0,

does not meet /-axis when a < 0, and (c) la meets the unit circle at

±(V4 - e2a /2 ± ie"/2) when a < log 2 and does not meet unit circle

when a > log 2. On la we also have

dx       -y{x2 + y2+ 1)                 dy       -x(x2+y2-l)
~r — -;-;-     and     — =- .
dy x(x2+/2-l) dx y(Xl  + yl  +   1)

From the properties of la discussed in the last paragraph, we see that la is

symmetric about the x-axis and the /-axis. Moreover, (A) for 0 < a < log 2,

la is a simple closed analytic curve, on which |/| increases from Ve" - 1 to

ea/2 when x increases from 0 to V4 - e2a /2, \y\ decreases from e"/2 to 0

when x increases from V4 - e2a /2 to Vl + ea , (B) for a = 0, la is a union

of two simple closed curves analytic at every point except 0, on which |/|

increases from 0 to } when x increases from 0 to V3 /2, and |/| decreases

from 1/2 to 0 when x increases from V3 /2 to V2 and (C) for a < 0, la is a

union of two disjoint simple closed analytic curves, on which |/| increases

from 0 to ea/2 when x increases from Vl - e" to V4 - e2a /2, and |/|

decreases from ea/2 to 0 when x increases from V4 - e2a /2 to Vl + ea .

Let u(z) = Re z = x. Then

Vu(a) = 4Vl + ea     when a > 0,

= 4V2     when a = 0,

= 4(Vl + ea - VT^T" )    when«<0.

Vu(a) is not convex at a = 0 because it has left-hand derivative +00,

right-hand derivative V2~ at a = 0. This example tells us that Theorem 1(5)
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cannot be improved. We note that Vuia) is increasing near a = 0 in this

example.

We observe that u*(z) = Im z = y and

Vu. (a) = 4(ea - Vea - Í )    when 0 < a < log 2,

= 4    when a = 0,

= 4<?a    when a < 0.

Vu.(a) has left-hand derivative 4, right-hand derivative  - oo at a = 0, so

convexity is impossible and in fact it attains a strict local maximum at a = 0.
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