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ON THE FRACTIONAL PARTS OF n/j,j = o(n)

JOHN ISBELL AND STEPHEN SCHANUEL

Abstract. Dirichlet's result that if J(n) = o(n) but «1/2 = o(J(n)), the

numbers n/j forj = 1,...,/(«) are nearly uniformly distributed modulo 1

(with error -» 0 as n -> oo) is extended, n>/2 being replaced by n" for any

a > 0.

1. To illustrate the problem considered here (and the results): for large n,

the real numbers n/j for j = 1, 2, ... , [ni/2], reduced modulo 1, are nearly

uniformly distributed. That is, for / E (0, 1), the fraction of those numbers

n/j that lie between [n/j] and [n/j] + t differs from t by at most e(n), where

e(n) -»0 as n —> oo.

If n]^2 is replaced by any function J(n) satisfying J(n) = o(n), but nl/2

= o(J (n)), the near-uniform distribution of those numbers is a result of

Dirichlet (see [1, p. 327]), who showed also that the distribution is not

uniform if J (n) i= o(n). This paper replaces Dirichlet's exponent 1/2 by any

a > 0.

Much the hardest part of the proof is due to A. Walfisz, who proved a

lemma on the distribution of some of the numbers in question. In 1932

Walfisz applied his lemma to estimates of the number of lattice points in an

ellipsoid [2]; in 1963 he gave some other applications [3]. But this application,

which seems the most natural one, also seems never to have been done.

Theorem. IfJ(n) = o(n) but some na, a > 0, is o(J (n)), then the fraction of

the first [J («)] numbers n/j (mod 1) which lie in an interval of length t in R/Z

differs from t by at most e, where e —» 0 as n -» oo.

We are indebted to Thomas Cusick and Lowell Schoenfeld for lively and

helpful discussions.

2. Walfisz's lemma concerns sums of the complex numbers e(n/j)

= exp(2trin/j). The following specialization will suffice.

Lemma (Walfisz). Let r be a positive integer, w E [0, 1], R = 2r~\ /?,

= R(r + l), M between /j'/(r+2) and «2/(r+3) (n need not be an integer). Then

j = 2M

2   e(n/(j + w)) = 0(A/1-1/*-1//V/*'log«).

j = M

All we want of the concluding expression is that it is o(M). Actually it

is not,  for the  smallest M allowed,  viz. /j1/<,'+2';  there the estimate  is
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0(M log M) (and is, of course, worthless). We narrow the requirements by

adding

(*) M > nll/(r+2).

Still the different values of r give overlapping intervals from 2n1/2 down

through all Na in which the average value of M + 1 successive terms

ein/ij + w)) beginning at j = M is always (as a function of n) o(\). More

precisely, for each r, if n is large enough, each of those averages is less than e

(by Walfisz's proof and (*)).

2nl/2 is not big enough (to adjoin Dirichlet's case). However, the o(l)

conclusion extends all the way up o(n).

Corollary. For Min) > /t11/3, M(n) = o(n), the average of ein/j) as j

goes from Min) to 2M(n) is o(\).

Proof. First, if we replace some n by n' = n/M(n), n' will still go to

infinity with n and "o(l)" may be referred equally well to varying n or

varying n'. This still applies though, precisely, we introduce b(n) — 1 +

[M(nf/n] and put n* = n/b(n), so that n/j = n*/(j/b(n)). Unless M(n)

> nl/2, b(n) = 1 and we did nothing. Otherwise (with negligible error) we

replace M by M* = (n*),/2. Precisely, add at most b(n) — 1 terms to the

sequence to make its length a multiple of b(ri) (affecting the average by less

than b(n)l'M(n) = o(l)). The sequence of expressions e(n*/(j/b(n))) de-

composes into b(n) sequences in which denominators form progressions with

difference 1; each has, with error o(\), the form in the lemma. So each has

average o(l), and the average of those b(n) averages is still o(l).

3. We wish to apply Weyl's criterion, familiar in this form: a sequence (a¡)

of complex numbers of modulus 1 is uniformly distributed if, for k

= 1, 2, . . . , the average of the first n kth powers a* approaches 0 as n -> oo.

We need the following form.

Lemma (Weyl). For each e > 0 there exists N such that given a finite family

of complex numbers of modulus 1, if for k < N the average of a* has modulus

less than \/N, then the fraction of the a, which lie in an interval on the unit

circle of length 2itt is between t — e and t + e.

Supposing this false, for some e we should have a sequence of examples,

N -» oo, missing by e on certain intervals. For a subsequence, the intervals

converge to a limit, and it is simple routine to patch together an infinite

sequence (a,.) violating the criterion as previously stated, which is absurd.

The theorem follows. For, first, for M > n" but o(n), the average of ein/j)

for y from M to 2M is small (for large n). Also M exceeds (2n)a/2, and the

average of e(2n/j) for those y is small. This is true of e(kn/j), uniformly in k,

as long as k < n, (kn)a/2 < na. So the modified Weyl criterion tells us that

those e(n/j) are uniformly distributed to within e (e-»0 as n -» oo). To

within 2e, we can apply this to all j less than I (n), for J (n) > 2sna but

J(n) = o(n). Let M0 = [2-V(/i)J, M, = 2'M0 for i <>s; the j intervals

[M¡, 2M,] reach from 1 to I in), with negligible error and negligible overlap,

and all have e(n/j) uniformly distributed (within e).
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