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A CLASS OF REGULAR MATRICES

GODFREY L. ISAACS

Abstract. Let m be the space of real, bounded sequences x = {xk} with the

sup norm, and let A = (ank) be a regular (i.e., Toeplitz) matrix. We consider

the following two possible conditions for A: (1) SJLja,,*! -» 1 as n -* oo,

(2) lk-i\an,k - an,k+i\ -"° as n -» oo. G. Das [J. London Math. Soc. (2) 7

(1974), 501-507] proved that if a regular matrix A satisfies both (1) and (2)

then (3) \imn^,x>(Ax)„ < q(x) for all x S m, where q(x)

= inf„.J,limjt_>00p"'2f_1x^ + t. Das used "Banach limits" and Hahn-

Banach techniques, and stated that he thought it would be "difficult to

establish the result... by direct method". In the present paper an elemen-

tary proof of the result is given, and it is shown also that the converse holds,

i.e., for a regular A, (3) implies (1) and (2). Hence (3) completely char-

acterizes the class of regular matrices satisfying (1) and (2).

1. We write aai for the space of real, bounded sequences x = {xk} with the

sup norm, and we say that an infinite, real matrix A = iank) is regular iff

^m/i-.oo(^x)n = c when lim^^x,, = c. It is known (see [2, p. 502]) that A is

regular iff (a) sup„2£L,|a„J < oo, (b) hmn^Jl^=xa„k = 1, (c) lim^a^ =
0 V/t. From (a) it is clear that Ax E m for all x E aai.

We shall be concerned with two classes of regular matrices: the one

consists of those regular matrices A = iank) for which (|a„iA.|) is regular. From

the conditions above this happens iff

00

k— 1

The other class consists of those regular matrices A whose action on an

x E aai is asymptotically independent of a "shift" in x, i.e., which satisfy

lim,1_),00L4(jc - Dx))n = 0 for all x E aai, where, if x = {xk}, Dx = {xk+x}.

By Lemma 3 below this happens iff

(2) lim   2 K* - aB,*+i|=0.
n^°°A:=l

We shall prove

Theorem 1. For a regular matrix A the following are equivalent:

(i) A satisfies (1) and (2);

(3)(ii) lim {Ax)n< q(x)   for all x E aai,
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where

_ p
q(x) =inf   lim /»-' 2 x +k.

n"p    k^«> 1 = 1

The quantity q(x) arises in connection with Banach limits [2, p. 501]: the

Banach limits on m are precisely the linear functionals f on m satisfying

/(x) < q(x) [2, Theorem 1]. From (3) we thus have that every x E m which is

almost convergent (i.e., for which - q( — x) = qix)) is summed by A to q(x),

which in turn is the common value of all the Banach limits.

G. Das [2, Corollary to Theorem 2] proved that (i) implies (ii) by using

Banach limits and Hahn-Banach techniques. He stated that he thought it

would be "difficult to establish the result... by direct method". Our proof of

Theorem 1 below uses only elementary methods.

2. Lemmas. Lemma 1 and its proof are substantially due to Lorentz [4, pp.

170-171].

Lemma 1. 7/x G m then q*(x) =limA-_>007f"12f=iXi.+n is independent of n

and satisfies q*(x) < t7(x) uniformly in n, i.e., given e > 0 there exists k'

independent of n such that

K

(4) K~x 2 xk + n< <7(x) + e   for all K > k' and all n > 0.
k=\

Proof. Taking two consequent values of n in the expression for q*ix) and

subtracting shows at once that q*ix) is independent of n. Now, writing

xk = ixk - b) + b, where b = inf xk, it is sufficient for the rest to take

xk > 0 for all k. By the definition of qix) we see that given e > 0 there exist

n¡,p, ke (/t, < nj+l) such that/j"'2f=Ixn+A;+„ < qix) + (e/2) for all k > kc,

and all n > 0. Write k* = max(/ce, np). For K > k* consider

s = k-xz p~x j: x„f+k+n.
k=\ 1=1

Splitting the outer sum into sums over the ranges 1 < k < k* and k* + 1

< k < K, we see that the first term obtained is < (A:*||x||)/7\ < e/4 for

K > some kx, where kx is independent of n > 0, and the second is < qix) +

(e/2).
Rewriting S as iKp) '2f=12f=.xn+A:+n and then splitting the inner sum

into sums having respective ranges \ < k < n — n¡,n — n¡ + \ <, k < K —

«, + nx, K - n, + », + 1 < k < K, we see that with S = A + B + C,

0 < A + C < (2/yjllxH//»)/:-1 < e/8    for all K > some k2

where k2 is independent of n > 0, and

n, + K f    K «t, K+nt    "j

o<p = 7v-'  2  xr+n=K~x   2-2+  S   k+B,
r=np+\ { r=l        r= 1        r= AT-1-1 j

= T - U + V,

say. Clearly, U and V are each nonnegative and < (||x||n )//C < e/16 for all

K > some /c3, where /c3 is independent of n > 0; hence
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0<T=B+U-V=S-A-C+U-V

< q{x) + (3e/4) + (e/8) + (e/8) = q(x) + e

for all K > k', where k' = max(A:*, kx, k2, k-f), k' being independent of ai > 0.

This gives (4).

Lemma 2. Foa- a regular matrix A the following are equivalent:

(i) A satisfies (1);

(ii) hmn^xiAx)n <Hmn^aBx„for all x E m.

This is given in [2, p. 503] (t + in (2.4) should read t). An elementary proof

is given in [1, pp. 150-152].

Lemma 3. For a regular matrix A, (2) is true iff

(5) lim (A (x - Dx)) = 0   for all x E m,
n—»oo v     v "

where, if x = {xk}, Dx = {xk+x}.

This is given in [2, p. 502]. If we write (5) as lim„^00((/l — AD)x)„ = 0 for

all x E aai, so that A and AD are "absolutely equivalent", the result is covered

by the elementary proof in [1, pp. 105-107].

3. Proof of Theorem 1: (i) => (ii). As in the proof of Lemma 1, it is sufficient

to take xk > 0 for all k. Now by the convergence of the series in (1),

oo co      tk' + k'

(6) i¿x)n = 2 ankxk= 2      2     ankxk   for all x E aai,
k=\ t = 0k = tk'+\

where, for given e > 0, k' satisfies (4). Now by writing xk = sk - sk_x, where

k

2 xr,        k > v,
k = v

0, k < v,

we have (cf. [3, line 1, p. 437])

w w—\

0) 2   ankXk=    2   hian,k  -  %,k+\) +  Swan,w =  E+  F,
k=v k=v

say. We apply this with v = tk' + I, w = tk' + k'; since

k'

0 < sk < sw = 2 xp + lk,< k'iqix) + e)    for all t > 0,

we obtain
(tk' + k1

A: = irc'+1

Now
Jfc'+l

^ |an,í*:' + *'| =    2u    |an,rAr' + A:'|
s = 2

k'+l I tk' + k' \

=    2       Kr*'+i-l|+        2       (K,r|-Kr-.|)   •
i = 2 \ r=tk' + s I
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Writing r = tk' + s - \ in the first sum, and majorizing |anr| - |a„,_[| by

\anr — anr_x\ and then replacing r = tk' + s by r = tk' + 2 in the second

sum, we obtain, by (6)-(8),

(OO 00 \

2   K,|+2*'2   Kr-^,r-l\)
r=\ r=2 I

for all n > 0, k' being independent of n. Hence

ïim (/lx)B< iqix) + e)(l + 2k' • 0) = q(x) + e.
n—»oo

Since e is arbitrarily small, we obtain (3).

(ii) => (i). (1) follows at once by Lemma 2 and the fact that (by taking

«,. = p = 1) qix) <lim„^00x„. Now as in [2, p. 502],

_ _ p
lim L4(x - Dx))n< qix - Dx) < lim p~x 2 (*,+* - */+jt+i)   for all/»,

"->«> k-*oo /=1

< lim 2||x||//>.
k—>oo

Since p is arbitrarily large, lim,,^^//! (x - 7)x))„ < 0. Replacing x - Dx

by Dx- x we get ÏÏrri^^^iTix - x))n < 0, i.e. \irn„^JA (x - Z)x))n > 0.

This gives (5), and hence (2), by Lemma 3.
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