A CLASS OF REGULAR MATRICES

GODFREY L. ISAACS

Abstract

Let m be the space of real, bounded sequences $x=\left\{x_{k}\right\}$ with the sup norm, and let $A=\left(a_{n, k}\right)$ be a regular (i.e., Toeplitz) matrix. We consider the following two possible conditions for A : (1) $\sum_{k=1}^{\infty}\left|a_{n, k}\right| \rightarrow 1$ as $n \rightarrow \infty$, (2) $\sum_{k=1}^{\infty}\left|a_{n, k}-a_{n, k+1}\right| \rightarrow 0$ as $n \rightarrow \infty$. G. Das [J. London Math. Soc. (2) 7 (1974), 501-507] proved that if a regular matrix A satisfies both (1) and (2) then (3) $\varlimsup_{n \rightarrow \infty}(A x)_{n} \leqslant q(x)$ for all $x \in m$, where $q(x)$ $=\inf _{n_{1}, p} \lim _{k \rightarrow \infty} p^{-1} \sum_{i=1}^{p} x_{n_{i}+k}$. Das used "Banach limits" and HahnBanach techniques, and stated that he thought it would be "difficult to establish the result . . . by direct method". In the present paper an elementary proof of the result is given, and it is shown also that the converse holds, i.e., for a regular A, (3) implies (1) and (2). Hence (3) completely characterizes the class of regular matrices satisfying (1) and (2).

1. We write m for the space of real, bounded sequences $x=\left\{x_{k}\right\}$ with the sup norm, and we say that an infinite, real matrix $A=\left(a_{n, k}\right)$ is regular iff $\lim _{n \rightarrow \infty}(A x)_{n}=c$ when $\lim _{n \rightarrow \infty} x_{n}=c$. It is known (see [2, p. 502]) that A is regular iff (a) $\sup _{n} \sum_{k=1}^{\infty}\left|a_{n, k}\right|<\infty$, (b) $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n, k}=1$, (c) $\lim _{n \rightarrow \infty} a_{n, k}=$ $0 \forall k$. From (a) it is clear that $A x \in m$ for all $x \in m$.

We shall be concerned with two classes of regular matrices: the one consists of those regular matrices $A=\left(a_{n, k}\right)$ for which $\left(\left|a_{n, k}\right|\right)$ is regular. From the conditions above this happens iff

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|a_{n, k}\right|=1 \tag{1}
\end{equation*}
$$

The other class consists of those regular matrices A whose action on an $x \in m$ is asymptotically independent of a "shift" in x, i.e., which satisfy $\lim _{n \rightarrow \infty}(A(x-D x))_{n}=0$ for all $x \in m$, where, if $x=\left\{x_{k}\right\}, D x=\left\{x_{k+1}\right\}$. By Lemma 3 below this happens iff

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|a_{n, k}-a_{n, k+1}\right|=0 . \tag{2}
\end{equation*}
$$

We shall prove
Theorem 1. For a regular matrix A the following are equivalent:
(i) A satisfies (1) and (2);

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}(A x)_{n} \leqslant q(x) \quad \text { for all } x \in m, \tag{3}
\end{equation*}
$$

Presented to the Society, August 23, 1974; received by the editors January 28, 1975. AMS (MOS) subject classifications (1970). Primary 40C05, 40H05; Secondary 46B15.
Key words and phrases. Regular matrices, Toeplitz matrices, Banach limits, almost convergence.
where

$$
q(x)=\inf _{n_{i} p} \varlimsup_{k \rightarrow \infty} p^{-1} \sum_{i=1}^{p} x_{n_{i}+k}
$$

The quantity $q(x)$ arises in connection with Banach limits [2, p. 501]: the Banach limits on m are precisely the linear functionals f on m satisfying $f(x) \leqslant q(x)$ [2, Theorem 1]. From (3) we thus have that every $x \in m$ which is almost convergent (i.e., for which $-q(-x)=q(x)$) is summed by A to $q(x)$, which in turn is the common value of all the Banach limits.
G. Das [2, Corollary to Theorem 2] proved that (i) implies (ii) by using Banach limits and Hahn-Banach techniques. He stated that he thought it would be "difficult to establish the result . . . by direct method". Our proof of Theorem 1 below uses only elementary methods.
2. Lemmas. Lemma 1 and its proof are substantially due to Lorentz [4, pp. 170-171].

Lemma 1. If $x \in m$ then $q^{*}(x)=\varlimsup_{K \rightarrow \infty} K^{-1} \Sigma_{k=1}^{K} x_{k+n}$ is independent of n and satisfies $q^{*}(x) \leqslant q(x)$ uniformly in n, i.e., given $\varepsilon>0$ there exists k^{\prime} independent of n such that

$$
\begin{equation*}
K^{-1} \sum_{k=1}^{K} x_{k+n}<q(x)+\varepsilon \text { for all } K \geqslant k^{\prime} \text { and all } n \geqslant 0 \tag{4}
\end{equation*}
$$

Proof. Taking two consequent values of n in the expression for $q^{*}(x)$ and subtracting shows at once that $q^{*}(x)$ is independent of n. Now, writing $x_{k}=\left(x_{k}-b\right)+b$, where $b=\inf x_{k}$, it is sufficient for the rest to take $x_{k} \geqslant 0$ for all k. By the definition of $q(x)$ we see that given $\varepsilon>0$ there exist $n_{i}, p, k_{\varepsilon}\left(n_{i} \leqslant n_{i+1}\right)$ such that $p^{-1} \sum_{i=1}^{p} x_{n_{i}+k+n}<q(x)+(\varepsilon / 2)$ for all $k \geqslant k_{\varepsilon}$, and all $n \geqslant 0$. Write $k^{*}=\max \left(k_{\varepsilon}, n_{p}\right)$. For $K>k^{*}$ consider

$$
S=K^{-1} \sum_{k=1}^{K} p^{-1} \sum_{i=1}^{p} x_{n_{i}+k+n}
$$

Splitting the outer sum into sums over the ranges $1 \leqslant k \leqslant k^{*}$ and $k^{*}+1$ $\leqslant k \leqslant K$, we see that the first term obtained is $\leqslant\left(k^{*}\|x\|\right) / K<\varepsilon / 4$ for $K>$ some k_{1}, where k_{1} is independent of $n \geqslant 0$, and the second is $\leqslant q(x)+$ ($\varepsilon / 2$).

Rewriting S as $(K p)^{-1} \sum_{i=1}^{p} \sum_{k=1}^{K} x_{n_{i}+k+n}$ and then splitting the inner sum into sums having respective ranges $1 \leqslant k \leqslant n_{p}-n_{i}, n_{p}-n_{i}+1 \leqslant k \leqslant K-$ $n_{i}+n_{1}, K-n_{i}+n_{1}+1 \leqslant k \leqslant K$, we see that with $S=A+B+C$,

$$
0 \leqslant A+C \leqslant\left(2 n_{p} p\|x\| / p\right) K^{-1}<\varepsilon / 8 \quad \text { for all } K>\text { some } k_{2}
$$

where k_{2} is independent of $n \geqslant 0$, and

$$
\begin{aligned}
0 & \leqslant B=K^{-1} \sum_{r=n_{p}+1}^{n_{1}+K} x_{r+n}=K^{-1}\left\{\sum_{r=1}^{K}-\sum_{r=1}^{n_{p}}+\sum_{r=K+1}^{K+n_{1}}\right\} x_{r+n} \\
& =T-U+V
\end{aligned}
$$

say. Clearly, U and V are each nonnegative and $\leqslant\left(\|x\| n_{p}\right) / K<\varepsilon / 16$ for all $K>$ some k_{3}, where k_{3} is independent of $n \geqslant 0$; hence

$$
\begin{aligned}
0 & \leqslant T=B+U-V=S-A-C+U-V \\
& <q(x)+(3 \varepsilon / 4)+(\varepsilon / 8)+(\varepsilon / 8)=q(x)+\varepsilon
\end{aligned}
$$

for all $K>k^{\prime}$, where $k^{\prime}=\max \left(k^{*}, k_{1}, k_{2}, k_{3}\right), k^{\prime}$ being independent of $n \geqslant 0$. This gives (4).

Lemma 2. For a regular matrix A the following are equivalent:
(i) A satisfies (1);
(ii) $\overline{\lim }_{n \rightarrow \infty}(A x)_{n} \leqslant \varlimsup_{n \rightarrow \infty} x_{n}$ for all $x \in m$.

This is given in [2, p. 503] (τ^{+}in (2.4) should read τ). An elementary proof is given in [1, pp. 150-152].

Lemma 3. For a regular matrix A, (2) is true iff

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(A(x-D x))_{n}=0 \quad \text { for all } x \in m, \tag{5}
\end{equation*}
$$

where, if $x=\left\{x_{k}\right\}, D x=\left\{x_{k+1}\right\}$.
This is given in [2, p. 502]. If we write (5) as $\lim _{n \rightarrow \infty}((A-A D) x)_{n}=0$ for all $x \in m$, so that A and $A D$ are "absolutely equivalent", the result is covered by the elementary proof in [1, pp. 105-107].
3. Proof of Theorem 1: (i) \Rightarrow (ii). As in the proof of Lemma 1, it is sufficient to take $x_{k} \geqslant 0$ for all k. Now by the convergence of the series in (1),

$$
\begin{equation*}
(A x)_{n}=\sum_{k=1}^{\infty} a_{n, k} x_{k}=\sum_{t=0}^{\infty} \sum_{k=t k^{\prime}+1}^{t k^{\prime}+k^{\prime}} a_{n, k} x_{k} \quad \text { for all } x \in m \tag{6}
\end{equation*}
$$

where, for given $\varepsilon>0, k^{\prime}$ satisfies (4). Now by writing $x_{k}=s_{k}-s_{k-1}$, where

$$
s_{k}= \begin{cases}\sum_{k=v}^{k} x_{r}, & k \geqslant v \\ 0, & k<v\end{cases}
$$

we have (cf. [3, line 1, p. 437])

$$
\begin{equation*}
\sum_{k=v}^{w} a_{n, k} x_{k}=\sum_{k=v}^{w-1} s_{k}\left(a_{n, k}-a_{n, k+1}\right)+s_{w} a_{n, w}=E+F \tag{7}
\end{equation*}
$$

say. We apply this with $v=t k^{\prime}+1, w=t k^{\prime}+k^{\prime}$; since

$$
0 \leqslant s_{k} \leqslant s_{w}=\sum_{p=1}^{k^{\prime}} x_{p+t k^{\prime}}<k^{\prime}(q(x)+\varepsilon) \quad \text { for all } t \geqslant 0
$$

we obtain

$$
\begin{equation*}
E+F \leqslant k^{\prime}(q(x)+\varepsilon)\left(\sum_{k=t k^{\prime}+1}^{t k^{\prime}+k^{\prime}}\left|a_{n, k}-a_{n, k+1}\right|+\left|a_{n, t k^{\prime}+k^{\prime}}\right|\right) . \tag{8}
\end{equation*}
$$

Now

$$
\begin{aligned}
k^{\prime}\left|a_{n, t k^{\prime}+k^{\prime}}\right| & =\sum_{s=2}^{k^{\prime}+1}\left|a_{n, t k^{\prime}+k^{\prime}}\right| \\
& =\sum_{s=2}^{k^{\prime}+1}\left(\left|a_{n, t k^{\prime}+s-1}\right|+\sum_{r=t k^{\prime}+s}^{t k^{\prime}+k^{\prime}}\left(\left|a_{n, r}\right|-\left|a_{n, r-1}\right|\right)\right) .
\end{aligned}
$$

Writing $r=t k^{\prime}+s-1$ in the first sum, and majorizing $\left|a_{n, r}\right|-\left|a_{n, r-1}\right|$ by $\left|a_{n, r}-a_{n, r-1}\right|$ and then replacing $r=t k^{\prime}+s$ by $r=t k^{\prime}+2$ in the second sum, we obtain, by (6)-(8),

$$
(A x)_{n} \leqslant(q(x)+\varepsilon)\left(\sum_{r=1}^{\infty}\left|a_{n, r}\right|+2 k^{\prime} \sum_{r=2}^{\infty}\left|a_{n, r}-a_{n, r-1}\right|\right)
$$

for all $n \geqslant 0, k^{\prime}$ being independent of n. Hence

$$
\varlimsup_{n \rightarrow \infty}(A x)_{n} \leqslant(q(x)+\varepsilon)\left(1+2 k^{\prime} \cdot 0\right)=q(x)+\varepsilon .
$$

Since ε is arbitrarily small, we obtain (3).
(ii) \Rightarrow (i). (1) follows at once by Lemma 2 and the fact that (by taking $\left.n_{i}=p=1\right) q(x) \leqslant \overline{\lim }_{n \rightarrow \infty} x_{n}$. Now as in [2, p. 502],

$$
\begin{aligned}
\varlimsup_{n \rightarrow \infty}(A(x-D x))_{n} & \leqslant q(x-D x) \leqslant \varlimsup_{k \rightarrow \infty} p^{-1} \sum_{i=1}^{p}\left(x_{i+k}-x_{i+k+1}\right) \quad \text { for all } p \\
& \leqslant \varlimsup_{k \rightarrow \infty} 2\|x\| / p .
\end{aligned}
$$

Since p is arbitrarily large, $\varlimsup_{n \rightarrow \infty}(A(x-D x))_{n} \leqslant 0$. Replacing $x-D x$ by $D x-x$ we get $\varlimsup_{n \rightarrow \infty}(A(D x-x))_{n} \leqslant 0$, i.e. $\underline{\lim }_{n \rightarrow \infty}(A(x-D x))_{n} \geqslant 0$. This gives (5), and hence (2), by Lemma 3.

References

1. R. G. Cooke, Infinite matrices and sequence spaces, Dover, New York, 1955.
2. G. Das, Banach and other limits, J. London Math. Soc. (2) 7 (1974), 501-507. MR 49 \# 924.
3. G. L. Isaacs, An iteration formula for fractional differences, Proc. London Math. Soc. (3) 13 (1963), 430-460. MR 27 \# 5061.
4. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. MR 10, 367.

Department of Mathematics, Lehman College, City University of New York, Bronx, New York 10468

