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NEW PROOF OF A DENSITY THEOREM

FOR THE BOUNDARY OF A CLOSED SET

PETER VOLKMANN

Abstract. From Browder [1] the following theorem is known: Let F be a

closed subset of the Banach space E; then the set R of points x E DF, such that

F n C = {x} for at least one convex C with nonempty interior, is dense in

dF. A proof of this will be given by means of a theorem of Martin [4] on

ordinary differential equations.

Proofs of the just quoted result have been given by Browder [1], [2], Danes

[3], and Phelps [5]. A completely different proof runs as follows: Assume the

statement of Browder's theorem to be false. Then there exists a point p E 3F

and an open, convex neighbourhood U of p such that

(1) R ndFn U = 0.

Now, for every function /: [7 —> F the formula

(2) lim inf | IF, x + hf(x)\ = 0       (x G 3F n Í7)

is valid (see below; \F,y\ denotes the distance from F to the point.y). Choose

q E U \ F and define

fix) = q-p        (xEU).

Then the unique solution of the initial value problem

uiO)=p,   «'(')-/("('))       (0< t < 1)

is m(í) = (1 - t)p + tq, but since/is Lipschitz-continuous and (2) holds, m(í)

must remain in F by Theorem 4 of Martin [4]. This yields q = u'\) E F,

leading to a contradiction.

To prove (2), fix x E öF n U and let e, h0 > 0. Then

Ce>Ao = {x + hfix) + hes\0 < h< h0, \\s\\ < 1}

is a convex set with nonempty interior. By (1), x G 7?, and so there is some

y E F n CC)V y ^ x, i.e.

y = x + hfix) + hes,   where 0 < h < h0, \\s\\ < 1.

Hence

\F, x + hfix)\ <\\x + hfix) - y\\= he\\s\\ < he,

yielding
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(1/ai)|F, x + hf(x)\ < e    for some h G (0, h0].

Since e and h0 have been chosen arbitrarily, (2) is established.
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