
proceedings of the
american mathematical society
Volume 60, October 1976

ON FIXED-POINT FREE FIBREWISE MAPS

OF PROJECTIVE BUNDLES

DAVID HANDEL

Abstract. Let £ be a vector bundle and P(E) its associated projective

bundle. Some necessary conditions on the characteristic classes of E for

existence of a fibrewise fixed-point free map P(E) -> P(E) are obtained.

1. Introduction. Let E —> B be an F-vector bundle, where F denotes either

the reals R, the complex numbers C, or the quaternions H, and letp: F(F) ->

B denote the associated projective bundle. We consider the question of

existence of fibrewise maps/: PiE)—> PiE), i.e. continuous maps such that

/
i\E)-y píe)

commutes, which are fixed-point free. By consideration of individual fibres, it

follows, from the Lefschetz fixed point theorem, that a necessary condition

for the existence of such an / is that the fibre dimension of E be even over F.

The main purpose of this paper is to obtain some necessary conditions on the

characteristic classes of E for existence of such a map /. For example, we

show that if the base space B is simply-connected, the existence of a fibrewise

fixed-point free/: PiE) —> F(£) implies that all odd Stiefel-Whitney classes

of E vanish (Corollary 3.3). Similar results are obtained in the complex and

quaternionic cases for the Chern classes and symplectic Pontrjagin classes,

respectively.

Existence of a fibrewise fixed-point free map/: F(£)—> PiE) is shown, in

§2, to be equivalent to the existence of what we call a PA -structure on E, in

analogy with the A -structures of James (see [l]-[3]). It is easily seen that the

existence of an equivariant A -structure on E, in the sense of [1], implies the

existence of a PA -structure on E, but we show in §2 that existence of a

PA -structure does not imply existence of an A -structure.

The characteristic class considerations are carried out in §3, the main tool
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being the structure of the cohomology ring of P (F) in terms of characteristic

classes of E.

Some examples are given in §4. In particular, it is shown in 4.1 that the

Whitney sum of two vector bundles admitting PA -structures need not admit a

PA -structure. This is in contrast to the situation for A -structures [3, Theorem

1.4].

2. PA -structures. If U is an F-vector space, we denote by PiU) the

projective space of U, i.e. the space of one-dimensional F-subspaces of U. If

u E U - {0}, let [u] E PiU) denote the one-dimensional subspace spanned

by u. Assume that U has an inner product (euclidean, hermitian, or sym-

plectic depending on whether F = R, C, or H). Let SiU) denote the unit

sphere in U, V(U) = {(«„ u2) E SiU) X SiU): ux±u2) = Stiefel manifold

of orthonormal 2-frames of U, and Z(U) = {([«,], [u2]) E PiU) X

PiU):ux±u2}.

Let E —> B be an F-vector bundle of dimension 2n over F, with a metric

(i.e. the structural group is 0(2n), U(2n), or Sp(2n) depending on whether

F= R, C, or H). Form the associated bundles p: P(E)^>B, S(E)^>B,

V(E)^B, Z(E)-+B with fibres P(F2"), S(F2n), V(F2n), Z(F2n), respec-

tively. If x E B and Ex denotes the fibre over x in E, then the fibres over x in

these associated bundles are canonically identified with P(EX), S(EX), V(EX),

Z(EX), respectively. Moreover we have fibre bundles q: Z(£)-> P(E) and

r: V(E)^> S(E) given by q([u], [v]) = [u] and r(u, v) = u. The fibres of

these bundles are P(F2n~x) and S(F2n~x), respectively. In [1], an A-structure

on E is defined to be a section of K(£) —> 5(F).

Definition 2.1. A PA-structure on £ is a section of the bundle q: Z(E) —>

P(E).

Proposition 2.2. There exists a fibrewise fixed-point free map f: £(£) —*

P(E) if and only if E admits a PA-structure.

Proof. If s: P(E) -» Z(E) is a PA -structure on E, define/: P(E) -» P(E)

by/["] = tts[u] where tt: Z(E)^> P(E) is given by ir([u], [v]) = [v]. Then/

is fibrewise and fixed-point free.

Conversely, if/: £(£)-» P(E) is a fibrewise fixed-point free map, define

s: P(E)-*Z(E) as follows: for [u] E P(£J, let s[u] = ([h], trj[u]) where

tru: Ex-> Ex is orthogonal projection onu1. Then 5 is a PA -structure on £.

Proposition 2.3. If E -^ B admits a PA-structure, and f: X^B is any

continuous map, then fE—>X admits a PA-structure.

Proof. P(fE) = {ix, y) E X X P(E):y E F(£/w)}. If g: P(E)^

P(E) is a fibrewise fixed-point free map, then so is h: P(fE)—>P(fE)

given by h(x,y) = (x, g(y)).

In [1], an equivariant A-structure on £ is defined to be an A -structure

s: S(E) -> V(E) such that s(uz) = s(u)z for all u E S(E), z E S(F), and it

is shown there that such cannot exist unless F = R. An equivariant A -struc-
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ture on E yields a PA -structure on E by passage to quotients.

Note that if F is an F 2-plane bundle, then the fibre of Z(F) —> PiE) is a

single point, and so a unique PA -structure exists for E. However, by [2,

Theorem 1.2], if E admits an A -structure, then all odd Stiefel-Whitney classes

of E vanish and, in particular, E must be orientable. Thus real nonorientable

2-plane bundles are examples of vector bundles which admit PA -structures,

but not A -structures.

3. Characteristic classes. Throughout this section d will denote the dimen-

sion of F over R, and the coefficients for cohomology will be understood to

be Z2 if F = R, and Z if F = C or H.

Let E -> B be an F vector bundle with a metric. Let LiE) —» PiE) denote

the canonical line bundle over F(F), i.e. the fibre over [u] consists of the

points on the line [«]. Then p*E s L(£) © L(£)x, where p: F(£)-> B

denotes the projection, and we can identify ZiE) with F(L(F)±).

Let a,(£) G Hd'iB) denote the ¡th characteristic class of £ (Stiefel-

Whitney, Chern, or symplectic Pontrjagin depending on whether F = R, C,

or H). As is well known, the structure of //*(F(£)) is as follows:

3.1. >Y*(F(£)) is a free /7*(£)-module with basis 1, x, x2, . . . , xdimE-1

where the module structure is via p*, and x = a,(L(£)). The multiplicative

structure is determined by the relation

dim E

2   (-l)'/>*a,.(£)-*dim£-'=0.
i=0

For an exposition see, e.g., [4, Chapter V]. We follow the sign conventions

of [4].

Theorem 3.2. Let E —> B be an F 2n-plane bundle with a metric. Suppose

there exists a fibrewise fixed-point free map P(E) —> P(E). Then there exists a

class a E Hd(B) such that

"l ' 2(-i)'(iK-i-,-*(£)«*=o
¿=0    i-k XK/

for 0 < r < 2ai - 2.

Proof. By 2.2 there exists a section s: P(E)^>Z(E) = P(L(E)X) of

q: P(L(E)±)^P(E). By 3.1, H*(P(L(E)X)) is the free H*(P(£))-module

(via q*) on 1, x, x2, . . . , x2"~2, where x = ox(L(L(E)±)), and we have the

relation

( = 0

Since/>*(£) = £(£) © £(£)-"-, it follows from the Whitney product formula

that

(2) P*îo,(E) = il+y) "i o^LiEf)
(=0 1=0
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where y = a,(£(£)). From (2) it follows that

(3) ai(L(£)±) = 2 (-l)V/>X-,(£)    for 0 < A: < 2« - 1.
7=0

Substituting into (1) and factoring out (- l)2""1 we obtain

(4) 2     "2   '(-\)'+Jq*yJq*P*o2n.x.l.J(E)xi=0.
i-O     7-0

Applying s* to (4) we obtain

(5) 21   "2   '(-l)'+V/'*a2n_1_,^(£)(,*x)'=0.

By 3.1 there exist unique classes a E HdiB), b G H\B) such that s*x = p*a

+ ip*b)y. Substituting into (5) we obtain

(6) Y2"!" íi-^'+J(l)p*[o2n-i-i-JiE)akbi-k]y^-k=0.
,=0      J-0     A: = 0 v/c/

Setting r = i + j - k and changing the order of summation we obtain

(?)    1sia"2"r2*(-i)r+*(i)j'*[»a.-i-,-*(Ä)aV-*]^-a
r = 0       A: = 0      i = k X K '

From (7) and the fact (3.1) that \,y,y2, . . . ,y2"~x form a free module basis

of 77*(F(£)) over 77*(7i), we have

(8) 2n2~r2Vi)*([K-i-r-*(£)^'-*=o

for 0 < r < 2/j - 1. Taking a- = 2« - 1 in (8), we obtain 1 + 2,17'6' = °>

from which it follows that 6 = — 1. Substituting this into (8) yields the

theorem.

Corollary 3.3. IfE^B is as in 3.2, and if HdiB) = 0, then a,(£) = Ofor

i odd.

Proof. For then a = 0, and so only the a0 = 1 terms in 3.2 survive,

yielding, for 0 < r < 2n - 2, 0 = 2'_0(— l)'a2„_1_r(£). For r even, this

yields a2n_,_r(£) = 0.

Corollary 3.4. Let E —> B be as in 3.2. Then at(£) is divisible by n. In

particular, if F = R and n is even, E must be orientable.

Proof. Setting r = 2n — 2 in 3.2 yields 0[(£) = na. In particular, if £ = R

and n is even we obtain W|(£) = 0.

4. Examples.

Example 4.1. Let L denote the canonical £ line bundle over £(£""),

m > 2, and L0 the trivial line bundle over £(£m). Let nt: P(Fm) X P(Fm) -»

P(Fm), i = 1, 2, denote the projections on the first and second factors,

respectively. Let £, = tr*(L © L0), i = 1,2. Since £, and £2 are both 2-plane
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bundles, they both admit PA -structures (§2). Write u = oxiL). By the

Whitney product formula, it follows that a,(£, © £2) = u X 1 + 1 X u,

which is not divisible by 2 in /Yi/(F(Fm) X F(Fm)). Thus by 3.4, £, © £2

does not admit a PA -structure. Thus the collection of £ vector bundles

admitting PA -structures is not closed under Whitney sum.

Example 4.2. Let £ -» B be any real vector bundle. Then there exists a

fibrewise fixed-point free map/: F(£ © £) -» F(£ © £) given by/[«, u] =

[o, - u].

Example 4.3. Suppose £ = C or H, and let L and L0 be as in 4.1. Let

£ = L © L0 © L0. Then a,(£ © £) = 2w, which is not divisible by 3 in

Hd(P(Fm)). Thus, by 3.4, £ © £ does not admit a PA -structure. Thus the

analogue of 4.2 for the complex and quaternionic cases is false.
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