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ESSENTIAL SELFADJOINTNESS OF CERTAIN
PARTIAL DIFFERENTIAL OPERATORS ON R"

A. DEVINATZ1

Abstract. Sufficient conditions are given on the coefficients of a second

order, semibounded, formally selfadjoint differential operator on R", not

necessarily elliptic, so that the closure of the operator restricted to Cq'(R")

is selfadjoint. The results are based on A. E. Nussbaum's notion of quasi-

analytic vectors.

1. Introduction. In this note we shall study the essential selfadjointness of the

minimal operator associated with a formally symmetric partial differential

operator of the form

n i) Lu =   2   aa(x)aau.
K     ' |«|<2

The coefficients shall be matrix valued and are defined on R". The exact

smoothness and growth conditions on the coefficients will be delineated in the

statement of the theorem.

Schrödinger type operators, i.e., those operators for which L is elliptic and

the aa are scalars, have been the subject of intensive investigations by many

mathematicians during the past two to three decades. On the other hand the

case where L is nonelliptic seems not to have received much attention. We

shall here make a start in this direction.

The proof of our theorem is based upon a result of A. E. Nussbaum [3]

concerning the essential selfadjointness of symmetric operators which contain

in their domains total sets of quasi-analytic vectors. His theorem states: If S

is a semibounded symmetric operator on a Hilbert space H, and if there exists a

total set of vectors u G <]{D(Sn): n > 1} so that ¿°=1 ||Sn«|H/2" = oo, then

S is essentially selfadjoint.

2. The main theorem. The coefficients aa in (1.1) shall be aai x aai matrix

valued functions defined on Rn. We shall designate by L2miR") the space of

(equivalent classes of) w-dimensional vector valued functions on R" for which

llMll   = Sr» \u\ dx < oo. The inner product shall be taken as

(m|ia) = I u ■ vdx,
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236 A. DEVINATZ

where u ■ v = 2T ujvj' and of course |w|   = u ■ u.

We shall designate by L0 the closure in L2m(Rn) of the operator L acting on

Crf(R"), and call it the minimal operator associated with L. We are, of course,

supposing that the aa are locally square integrable so that this makes sense.

In what follows we shall use |x| and x • y to designate the usual Euclidean

norm and dot product for elements of 7?". If aa is a matrix by \aa | we mean

any convenient norm for aa. We shall often designate 3a/by/'a'.

Theorem. Suppose the coefficients of the formally selfadjoint operator Lof(\.\)

are in Cco(R"). The minimal operator L0 associated with L is selfadjoint if it is

semibounded, and if there exists a constant K > 0 so that for all multi-indices a

and ß with \a\ < 2,

(2.1) |fl<*)(jc)| < tfM+^l + e|x|)W-IA,

where e = 0 or 1.

Remarks. 1. The condition (2.1) is, of course, a very restrictive condition on

the coefficients. Elementary examples of ordinary differential operators which

satisfy the conditions of the theorem are

(x2«')' + i[xu' + (xw)']

and

(sin2xt/)' + z'[sin2x cosxt/ + (sin2x cosxu)'].

Elementary examples of partial differential operators are

3] |x| 3] u + 32x232«

and

3i sin2(xi + x2)dxu + 32cos2x232«.

Actually, it is not necessary to put any smoothness requirements on a0, since

once we have proved the essential selfadjointness under the conditions we

have given, the essential selfadjointness will not change by the addition of a

bounded measurable function.

2. As our proof will show, we could have also obtained results for first order

operators by making use of Nussbaum's result in [2]. However, we have

refrained from commenting about this since Paul R. Chernoff[l] has obtained

much better results for first order systems by making more sophisticated use

than we have been able to do of the circle of ideas connected with analytic

vectors. His techniques also work for certain second order semibounded

elliptic operators.

The estimates necessary to prove the above theorem are based in part upon

the following

Lemma. There exists a constant K > 0 so that for every nonnegative integer s

and every multi-index a,
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fRm |(1 +\x\yZ«exoi-\x\2)\2dx < [K{\a\ + s)f+s.

3. Proof of the theorem. For a E R", let ua = exp(-|.* + a\2) and set

m = (CjWa ,... ,cnua/¡), where ck is a complex number. We claim that u is in

the domain of L¿ for every positive integer /. The proof is more or less

standard. Let d> be a real valued function in Co°(Ä") such that 0 < 4> < 1, ¿>

= 1 for |jc| < 1, and <f> = 0 for |x| > 2. If we set <¡>kix) = <¡>ix/k) it is clear

that Lu E L2miRn) and that uk = $ku E F>(L0). Further we have

Lu - L0uk = (1 - 4>fc)Lw + Mk u,

where Aí¿ is a linear function in the derivatives of ¿>¿ with aai X aai matrix

coefficients which are at most of polynomial growth. Thus Mku -* 0 in

L^fl") and since clearly (1 - <bk)Lu -* 0 in this same space, we see that

u & LQ and L0u = Lu.
Make the inductive hypothesis that m G Z/0 and that Vj = L!0u = NjU,

where M is an aai X aai matrix valued function so that it and each of its

derivatives is at most of polynomial growth. Thus Lvj G L2m (/?"), and as

before we have

Lvj - L0<bkVj = (1 - <bk)Lvj + M¿u,

where M¿ has the same properties as Mk . Thus u is in the domain of

LJ0+l and L0+1« = tí+xu. This also shows that Lfflu = Nj+Xu, where Nj+X

has the same properties as Nj.

Let us make the inductive hypothesis that the differential operator If may

be written as

where a,-,, G C00(/?"), and for 1 < ac < / and 2(ac - 1) < |a| < 2ac,

(3 2)      \ai»\x)\ < 4U-"n+2)Sy-2+mlU-m2jm(] +   ,  |)W-IA
(3.2)      |a;,a W| ^    ^ _ 2)!]2(^ _ i)la|_2(i_1} y    (1 + e|*|) ,

where K is some suitable constant and, as in the hypothesis of the theorem,

e = 0 or 1. We also make the convention that for ac = 1, the denominator on

the right-hand side of (3.2) shall be 1. Note that if / = 1 then aXa = aa and

(3.1) and (3.2) are satisfied by hypothesis.

Using (3.1) we may write

LJ+] =   2   aada    2    ajjdf
/3 3) W<2 \ß\<2j

=    222 i1)attaflda+ß-\
|/3|<27 |a|<2 K«

For \a\ < 2, |,3| < 2/, and v < a, let us set for fixed y, \y\ < 2(/ + 1),



238 A. DEVINATZ

(3.4) ay+i,T =      2      i")aaap}ß.
a+ß—v=y

From Leibnitz' formula

(3.5) \aaaj,ß)       —    2*   \s)aa   aj,ß

In (3.4) let us suppose, at first, that 2(k - 1) < |y| < 2k, 1 < k </. Since

a - v > 0 and |a| < 2, we must have \y\ - 2 < \ß\ < |y|. Thus the maxi-

mum value that can be taken on by \v\ is \ß\ — \y\ + 2. If \ß\ > 2(k — 1) we

have from (3.5) and the inductive hypothesis,

w oo 4O-0("^)^3O-r-i)-2+|.|[y.!]2
ll«.«;./»7     I ^ [{k _ 2)l]2(k _ l)lßl-2(k-X)jM-m

(3.6) • (/+ l)W(l +e|x|)MH'i!

4U-l)(«+2)/:3(/+l)-2+W^!j2

^ [(k - 2)\}2(k - 1)M-2(*_I)

•(/+ 1)W(1 +e\x\)hl~W.

If \ß\ = 2k — 3, then the only possibility is v = 0 and in this case we have

, w ^ 4(7-l)(n+2)^3(J+2)-2+Wr -,i2
|(flaa í)(li)\ <-/^-\P- ■ (j + l)w(l + ^|^|)lYl_lMl

a y,/î [(k-3)\]2(k-2)j2

4(j-\)(n+2)K3(j+\)-2+\ßU ¡n2

[(/V - 2)!]2(ÂV - 1)

Since when \ß\ = 2k - 3 we must have |y| = 2/c — 1 (and |a| = 2) it follows

that inequality (3.6) is satisfied in this case as well.

For given a, v, and y, ß is determined by the equation a + ß — v = y.

Hence, for y fixed we have the crude estimate

2     C)<   2    2 (Î) < 22(4)n < 4"+2.
a+/3-e=Y |a|<2 <-<a

If we use this estimate in conjunction with (3.4) and (3.6) we see we have (3.2)

with/ replaced by (/ + 1).

It is still necessary to consider the case when k = j + 1 so that 2/ < |y|

< 2(/ + 1). Now, the maximum value for \ß\ in (3.4) is 2/, and because of the

present bound on |y|, the minimum value for \ß\ is 2/ - 1. As before, the

maximum value which can be taken on by |j»| is \ß\ — \y\ + 2. If one uses the

inductive hypothesis and makes the same computations which lead to (3.6)

one will get this inequality with k replaced by/ + 1. It will then follow as

before that (3.2) is valid with / replaced by / + 1, and 1 < k </+ 1.

Further, it is clear that
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aj + \,a<¿+1 =       2       ai+uda.
|«|<20+1)

Thus the induction is complete.

We are now in a position to get estimates on the numbers ||L-'0u||. From (3.1)

and (3.2) we see that there is a constant K so that

||4«|| <*?[(/ -I)!]2

(17) I ^ 11(1 + \x\)Moau\\

k=\ 2(*-l)<|«|<2* [ik - 2)\]2ik - l)!«!-2^-')'

Using K as a generic constant we note first that 1 + |jc| < A"(l + \x + a¡\), 1

< i < ac. Hence using the lemma we get for \a\ < 2k,

||(1 + |x|)|a|3au|| <KÎ ||(l + |;c + a,|)|a|3%||
i'=i

< KiKk)2k,

and thus for 2{k — 1) < |a| < 2k < 2/,

J\k=2)   '

1 + |*|)|a|3aM|| <KJ(    k    \2k

[ik - 2)!]2(ac - ljW-2^-1*

where we have used Stirling's approximation in the last inequality. Making use

of this estimate in (3.7) and using Stirling's approximation once more we see

that there is a suitable constant K so that \\L¡0u\\ < Kfj *. Thus we have

(3.8) 2  \\LUVV2J = oo.
7=1

Since the Fourier transform of exp(-|x| ) does not vanish, the linear

manifold determined by its translates is dense in L2{R"). Thus the linear

manifold determined by the set of u for which (3.8) is true is dense in L2m{Rn).

That is to say, L0 has a total set of quasi-analytic vectors in the sense of

Nussbaum. Hence we conclude from Nussbaum's theorem that L0 is selfad-

joint.

4. Proof of the lemma. Let us begin by supposing that x is a real variable

and ß is a nonnegative integer. By a well-known formula we have

H \xPexpi-x2)\2dx = 2 C x2^exp(-2x2)i/x
7 — 00 J"

(4J) fw\ - 3 ■ 5 • • - (2)8 — 1)
2 22P

If ac is a nonnegative integer we recall that

(4.2) id/dx)kexpi-x2) = Hk(x)expi-x2),

where Hk is the Hermite polynomial of order ac. We also recall the recurrence
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formula

(4.3)
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Hk + \  — 2xHk - 2kHk-\> H-\ 0.

Let us make the inductive hypothesis that for every nonnegative integer ß

and for every nonnegative integer a < k,

(4.4)
r. Kl)"«*-*2»dx

< (a + \y
2,/r l-3-5---(2(a + jS)-l)

22/3

Formula (4.1) shows that (4.4) is true when a = 0. An elementary computa-

tion combined with (4.1) shows that (4.4) is also true when a = 1. Making use

of (4.2), (4.3), the Schwarz inequality, and the inductive hypothesis (4.4) we get

/•»I   a( d \k+i -, I2

L\*\i) «ph^I*
<2 {[£ kiD'^H*]

1/2

1/2 a 2

< 22VV2{(ä: + 1)[1 • 3 • • • (2(* + ¿8 + 1) - \)/22^+l)f2

+k2[l • 3 • • • (2(* + ß - 1) - 1)/22"]1/2}2

For ß > 1 and k > 1 we have

1 • 3 • ■ • (2(/c + j8 - 1) - 1)

22y8

<

1 • 3 • • • j2jk + ß + 1) - 1)

22/3(2(Â: + ß) - 2) • • • (2(/c + /3) + 1)

1     1 • 3 • • • (2(Ä: + 0 + 1) - 1)

(2/c)4 22/j

Thus we have

i;k(i) «*H*
< 1/c + 1 +

For /? = 0 we use Parseval's equality

w 1 • 3 ■ • • j2jk + ß+\)-l)

22ß

r \(A.\k+\
7-00 \\dx/

exp(-x2) dx -Z\[(é¿)k+l^-^]^\2^
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where

[(éf'«»'-*2)]"«) . -^£e-*(¿)'+'exp(-^

- (¿S)í + 'exp<-{2/4)/\/2.

This gives

/-" |[(sf'"^'M* - f Í*"«'H'/V!
= v^/21 -3---(2(ac+ 1)- 1),

so that (4.4) is true for every a and ß.

Let us now complete the proof of the lemma; i.e., we estimate the integral

\   |(1 +|x|)s3aexp(-|;c|2)|2<ix.

We first notice that

(1 + |x|)2i < 22*(1 + |x|2i)

and

|2i =    y    rnY.2ß

Hence we must estimate

- = 2 cpx2",    2
\ß\=s \ß\=s

(4.5)  fR, \x^exVi-\x\2)\2dx=J\J^ \xp(¿yJtxpi-x})\2dxj.

We have just previously estimated the integrals on the right so that the product

is estimated by

4W-y/2 A l-3---(2(a, + /3,)-l)

\2j     jL\ 2K«j+ßj)

Using Stirling's estimate we may write

1 • 3 • • ■ (2(0,- + ßj) - 1) _      I2iaj + ßj)]\(aj + ßj)

22{aj+ßj) 22{-aJ+ßJ)iaj + ßj)\ 2%+ft-'

< 2e-^¡+Pj\aj + ßj)*J+ßJ.

Thus it follows that

42|a|e-(|aM(2w)V2(|a| + s)M+¡

is an estimate for the left side of (4.5). As a consequence we get the estimate
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jRn |(1 +W)|i3«exp(-H2)|2£7x < i2tr)"/2i42n/e)M+si\a\+s)M+s,

which completes the proof.
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