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CLASSIFICATION OF SPACES
OF THE SAME «-TYPE FOR ALL n

clarence wilkerson

Abstract. The set of homotopy equivalence classes of CW-spaces Y for

which the Postnikov approximations are homotopy equivalent to those of a

given space X is shown to be in one-to-one correspondence with lim1 of a

tower of homotopy automorphism groups.

Recall that two CW-spaces X and Y are said to have the same «-type if the

«th Postnikov approximations Jiw and F(n) are homotopy equivalent. The

homotopy classification problem for infinite dimensional complexes can be

studied in two steps. First, classify all finite dimensional complexes (!) and

then classify for a given X all complexes of the same «-type for all « as X.

The purpose of this note is to codify this second step.

Theorem I. Let X be a connected CW-space. Denote by SNT(X) the set of

homotopy equivalence classes of CW-spaces Y such that Y has the same n-type

for all n as X. Then SNT(X) is in one-to-one correspondence with the pointed

set lim'(Aut(Ar("))), where Aut^'"*) is the group of homotopy classes of

homotopy equivalences of X^.

The relevance of lim'-type arguments is clear from the work of Adams [1]

and Gray [4], but Theorem I seems to be the first explicit formulation of the

classification problem. The first application is to study some cases for which

SNT(X) = {A'}.

Corollary II. Let X be a simply connected CW-space such that Tt¡(X) is

finitely generated in each dimension.

(a) (Adams [1]) If tt¡(X) is finite for all i > 0, then SNT(X) = {X}.
(b) IfX0 denotes the rationalization of X [8], [3], [5], then SNT(X0) = {X0}.

(c) If X denotes theprofinite completion of X [8], then SNT(X) = {X}.

The proof of the corollary is the demonstration that for the towers of

automorphism groups involved, the lim1 set reduces to the one point set.

Proposition III. Let X be a simply connected CW-space such that tTj(X) is

finitely generated in each dimension. Then lim'(Aut(Ar("))) sa lim1(Im(«)), where

Im(«) denotes {image(Aut(X(n)) -» A\xX(X¿">))}.

Finally, we study in some detail an example of a rational 77-space X such

that SNTiXp) ¥= {Xp} for any prime/;. This example is motivated by Gray's

proof [4] that for W = CPX X QS3, SNTiW) *= {W). Our example shows
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that the finite dimensionality hypothesis of Theorem 1.1 of [2] is necessary:

there the result is that if Y' and Y" are simply connected finite dimensional

rational /7-spaces such that Y' » Y", then Y'p » 7". However, Corollary

11(c) and the example above show that this cannot hold in general.

We note that the classification argument of §1 is a variant of the standard

"principal homogeneous space" argument of algebraic geometry, and can be

modified to classify the possible pullbacks of other diagrams of spaces in

terms of the automorphism groups, e.g., §3 of Wilkerson [10]. I would like to

acknowledge helpful discussions with J. F. Adams, A. K. Bousfield, J. Cohen,

G. Porter and P. Trauber on this material.

I. The classification. We first recall the definition of the lim1 functor for a

tower of groups (G„, qn), where qn: G„ —> G„_,: there is an action of the

product group Ii„G„ on the product set U„G„, defined as (yn)(an)

= (Ynan(?/i+i(ïn+i)_1))- The orbit set of this action is denoted as lim'G,, and

has as a base point the equivalence class of (e„), where en is the identity

element of G„.

For the proof of Theorem I, the simplicial setting offers some technical

advantages. The Moore-Postnikov decomposition is functorial and inverse

limits can be taken as inverse limits of sets. A' is to be considered a pointed

connected minimal Kan simplicial set in the following. We first recall the

Moore-Postnikov decomposition of X, see, for example, May [6]. Define an

equivalence relation on the simplices of X, x ~" y, if and only if all corre-

sponding faces of x and y of dimension less than or equal to ai agree. X(n), the

quotient of X by ~", is again a pointed connected minimal Kan complex.

X -> X(n) is a Kan fibration, and the triangle

X ->  Xo0

\      *\
jt^n-l) _ ry(Aih(n-l)

commutes. If Inn is applied degree-wise to the tower of fibrations iX(n), pn),

then X = limiXM, pn) as simplicial sets. It is also clear from the construction

that any simplicial map /: X ^> Y induces /„: X(n)-+ Y(n) for all ai, which

commutes with the projections, and conversely, a family of maps /„ which

commutes with the projections determines a unique map /: X —> Y.

Note that if X and Y are minimal complexes, then any homotopy

equivalence /: X -» Y is actually a simplicial isomorphism. This will be

convenient for technical reasons. Define Simp Aut(.Y(n)) to be the set of all

simplicial isomorphisms of Xw to itself. We begin the classification of

SNTiX) by defining a set map <p: Il„ Simp Aut(Jr(n)) -» SNTiX). Let 5
= (a0, a,, . . . ) belong to Il„ Simp Aut(Ar(n)). Define

<pià-) = Xa = limiXM,an_xPn),

where the inverse limit is applied degree-wise. Then X- is again a minimal

Kan complex and belongs to SNTiX). The homotopy lifting property of the

fibrations an_xp : X(n)-» X{n~" shows that if an is homotopic to a'n for all ai,
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then X¿ is homotopy equivalent to X-. Thus <p: n„AutLY(n)) -» SNTiX) is

well defined.

We show now that <p is onto. Let F be a minimal Kan complex in SNTiX).

Choose for each « a homotopy equivalence (simplicial isomorphism) gn:

YW->Xin). Denote the map induced by gn+x as ig„+l)„: Y'n)^> X(n) and

define (a„) = ((g„)(g„+,)"'). Then F = Jfs = \imiXn, a„_xp„) as simplicial

sets. That is, <p is surjective.

We now show that <p remains well defined after passage to the quotient set

lim1(Aut(A(,,))); that is, if 5 - 7 » ß, then X- » A^. The square below
commutes up to homotopy:

Pn
f

¿n-l)

> ^«)

?« =T«

V

8n-l       "In-

jAn-1)

an-l

We wish to find a map homotopic to yn such that the diagram commutes.

Assume this has been done at all levels below «, and that the ym = gm in the

diagram are the modified maps, for m < «. Then the covering homotopy

property of the fibrations shows that gn homotopic to the original yn exists

such that the diagram commutes. Thus, there is an isomorphism g: X^ —> X-.

Conversely, given an isomorphism g: X-ß —> X-, define yn = gn and it is easy

to see that ä = y ° ß. Thus <p: lnn,(Aut(A'(',))) -» SNTiX) is monic. That is <p

is an isomorphism of pointed sets, since it takes the equivalence class of (e„)

to {X}, and is monic and surjective.

The proof for the case that A" is a CW-complex now follows by taking the

X above to be a minimal subcomplex of the singular complex of X' and

observing that the geometric realization of A*"' gives a Postnikov tower for

A", up to homotopy.

II. Vanishing of lim1. Recall that a tower of groups (G„, qn) is Mittag-Leffler

if   for   each   «, there   exists   Nn   such   that   image qn + m ■ . ■ q„+x

.N . . . qn+x for all m > Nn. If (G„, qn) is Mittag-Leffler, then

lim'CT, = * ; see Bousfield and Kan [3]. Therefore Corollary 11(b) follows
directly from Lemma 2.1.

image qn.
.1/

Lemma 2.1. 7/ A is a simply connected CW-space such that tr¡iX) ® Q is

finitely generated over Q for each i, then the tower of groups (Aut(A0(n)), qn) is

Mittag-Leffler.

Proof. By Wilkerson [10] or Sullivan [9], there is a finitely generated

Q-Hopf-algebra S(«) such that Aut(A0<">) = HomQ.alg[5(«), Q] and p„: X^n)

->Ar0(n_1) induces pn:Sin- l)-»5(«)  a  map  of  Q-algebras.  That  is,
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AuliX¿n)) is a linear algebraic group over Q, and qn is a morphism of linear

algebraic groups. Thus the image of each AutXX¿n+ky) is a closed subgroup of

KntfX^) in the Zariski topology. That is, there is an ideal Ikn of S (ai) such

that the image is exactly the elements of HomQ.^JS^Ai), Q] which annihilate

Ikn. Since Ikn is properly contained in Ik + Xn if the image subgroups do not

coincide, the noetherian property of S in) shows that Aut(Arfj',)) is Mittag-

Leffler.

Lemma 2.2. // (G„, qn) is a tower of compact topological groups and continu-

ous homomorphisms, then lim'G,, = * .

Proof. This is an easy application of the finite intersection characterization

of compactness and is well known.

Lemma 2.3. Let X be a simply connected CW-complex such that -n+iX) is

finitely generated over some subring of Q. Then Aut(Â(n)) is compact and

qn: Aut(Aî/,("))^Aut(A^(',-1)) is continuous.

Proof. This is similar to arguments in Sullivan [8]. By Bousfield and Kan

[3], XW m iX(n)Tp « RXXM for R = Z/pZ. RxX(n) is the inverse limit of

a functorial tower of fibrations RSXM, where for R = Z/pZ, the homotopy

groups of each RSXW are finite in each dimension. Thus Aut(/?JA'<'')) is finite

for all s. Now given f: RXY ^ RXY, there is induced Rsif): RSRXY

—► RSRXY. However, the natural map <p: Y^>RXY induces Rs<¡>: RSY

—> RSRXY which is a homotopy equivalence for good spaces Y. That is, there

is a natural map from Aut(Ä00A,(")) to the tower of groups Aut(/?JAr(")). The

finiteness of [SX("\ RsX(n)] implies that ljms[X("\ RsX(n)] -> [Xw, RXXM] is

a bijection, by the short exact sequence of [3] or Quillen [7] for the homotopy

groups of the inverse limit of a tower of fibrations. Since RSXM and RxXin)

are Z/p-complete [3], this holds with X(n) replaced by RxX(n).

Thus Aut(ÄMI("))^limAut(ÄJA'('") is monic. Since Ä00Ar(n) =

lim RSX^"\ it is onto. Therefore Aut(/?XX<")) is compact, since it is the

inverse limit of a tower of finite groups, and the maps qn are continuous since

they are induced from families of compatible maps between the finite groups.

This completes the proof of Corollary 11(c), since Aut(F) = II   Aut(T ).

III. An example. We first recall a special case of a theorem of Hilton,

Mislin and Roitberg [5].

Lemma 3.1. Let X be a simply connected CW-complex with tr^iX) finitely

generated over some subring ofQ. Then Aut(A"(n)) -> Aut(Ar0(n)) has finite kernel

Kn for all ai > 0.

Since lim1 of a tower of finite groups is the one point set, the tailend of the

six term exact sequence associated to the short exact sequence of towers of

groups [3],

{1} -» {K„} -» (Aut(A-W)} - {Im(Ai)} -* {1},

degenerates to * —> ljm1Aut(A'<")) -^ hm'lmÍAi)—> * , an exact sequence of

pointed sets. While this proves that \p is surjective, it only states that the

basepoint is taken to the basepoint by \¡/. It remains then to show that if
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4>iß) ~ »K«)» trien actually ß ~ a in hjn'Au^A^). By the next lemma, this

is a general fact about certain short exact sequences of towers of groups.

Lemma 3.2. If (1) -* {G„'} —» {G„} ->* {G„") —» {1} « a« exaci sequence of

towers of groups, then if {G„'} ii Mittag-Leffler, lim'(^) ii a bijection of pointed

sets.

Proof. If 5, /? are such that i//(ä) ~ ^(ß) in lim'Gn", then a„ = (/i„xn) for

some choice of xn in G„'. Therefore it remains to show only that for each

choice of xn, ianxn) ~ (an). The problem is to inductively choose yn+1 such

that (y„+1)„ = ia~xynan)xn. If (G„'} is a tower of epimorphisms, this is easy.

But since {G„'} is Mittag-Leffler, we can assume up to proisomorphism of

towers of groups that V/c > 0,

{image G'n+k -» G„'} = {image G„'+1 -» G„} = (definition){G<°'}.

Thus we have a ladder:

{i}    -   {g„'(1)}    -   {<#>}    -   {gí'>/g;<'>}    -   {i}

I I/' if if" i
{1}      -,       {G'n}       -,      {G„}      - {G;} -     {1}

Since/' and/are proisomorphisms,/" is also. Observe that {G„'(1)} is a tower

of epimorphisms. Since proisomorphisms induce bijections on lim1, this

concludes the proof.

The proof of Proposition III is the combination of Lemmas 3.1 and 3.2.

For the example, we need a space Y with properties similar to those of fiS3.

Lemma 3.3. There exists a finite type CW-space Y such that (a) Y0

» KiQ, 2), (b) 772( Y, Z) = Z with generator x2 such that x2 is divisible by n",

and (c) for each prime p and any b in Z , there is fb: Y -^ Y   such that

lb X2 = "x2-

Proof. Construct the Postnikov approximations to Y inductively: F(2)

= K(Z, 2), and y(2n) is induced from Y(2"-2) by killing the Z/n"Z reduction

of the image of x2" of 772n(7C(Z, 2), Z) in H2"iY(2"-2\ Z). Thus (b) is

immediate and (c) follows from the homogeneity of the rc-invariants of Y.

Example 3.4. Let X = A"(Z, 2) X Y, for Y as 3.3. Then for each prime/?,

there exists a sequence of positive integers ü(«) such that u(«) -» oo as « -» oo

and such that there is a one-to-one correspondence between SNTiXp) and

the quotient of the set of /?-adic integers of the form 'Z\xbnpvW under the

equivalence relation that 2/3¿p(,!) ~ S/y?1'*"' if and only if there exists a

//-local integer 7i and a/?-local unit A such that ,42¿y>t,('') + 2è>"(n) = Ti. In

particular, W in SNTiX ) is homotopy equivalent to A^ if and only if the

corresponding /j-adic integer is actually a p-\oca\ integer. It also follows that

SNTiXp) is uncountable for each p. We conjecture that this example is valid

if Y is replaced with Í253.

Proof. By Proposition III, it suffices to consider the tower of groups

77 2(Aut(X^ln)), Q), since this is isomorphic to the tower of images of the

automorphism groups in the automorphism groups of the rationalization of

the  Xfn\  Consider  the  "components"  of /: Xp(2n) -> Xp(2n): fxx:K(Zp,2)
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-* KiZ 2), fX2: KiZp, 2) -* Yf\ f2X: Y™ -* KiZp, 2) and f22: T<2">
-* Y£*■"'. Now/u,/21, and/22 can induce maps of degree any/i-local integer

on H2iX£2">, Q), but the effect of /12 is more constrained.

Lemma 3.5. Let g: CP(ai) -> Yp. Then image H2ig, Zp) is divisible by at least

pv("\ with max.j<nvpif) < vin), where vpij) is the exponent of the largest power

of p dividing j.

Proof. This follows immediately from the structure of the cohomology

algebras of Y and CP(ai), using 3.3(b). An upper bound for u(ai) can be given

in terms of the />primary torsion of the first 2ai homotopy groups of Y. Any

multiple of pvW can then be obtained as the degree of/12, if vin) is taken to

be the minimum.

With this characterization of G„ = H ^Au^A^2"', Q), it is easy to show that

each ian) G II „G„ is equivalent to

{(: T)}
for some choice of ib'n). If

{Ci D)
has the property that

/*„+.     %+IWl     sn\(\     tH\i"n    r„\

\cn+x     dn+x)\0     i)     \o     i)\cn    d„)

for all ai > 0 and the rn, sn and tn satisfy the/»-divisibility requirements of 3.5,

then by recursion, we have that rx = d{22tn — a{2fsn is a valid equation in

Zp. Conversely, if there exist p-loca\ integers ax, dx, and rx such that such an

expression holds, one can solve for an, rn, cn and dn and show that

in ljjn'G„. We remark that the same analysis for Xp shows that SNTiXp)

= {Xp} without falling back on Corollary II.
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