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Abstract. Certain elements of the boundary dependence of minimal

harmonic functions in Euclidean domains are considered. For a given

minimal harmonic function A on a domain Í2, sets on the boundary of Q or

(relative) neighborhoods of such sets are sought wherein the behavior of h

determines h in all of ti. The set of determining singletons on the boundary

is shown to be connected.

A minimal harmonic function in a Euclidean domain S2 (introduced by

Martin [4]) is a positive harmonic function h(x) in il satisfying the "minimal"

property:

if u(x) is any harmonic function in £2 such that 0 < u < h

in S2, then there is a constant C > 0 such that u = Ch.

Martin proved that these functions form a basis for all nonnegative

harmonic functions in fi, with any such function represented by an integral of

minimal harmonic functions with respect to a uniquely determined measure.

In the case of domains Í2 with smooth boundaries, this representation is the

Poisson integral formula and the minimal harmonic functions are the Poisson

kernel functions with poles on 3fi. This equivalence of the "Martin boundary"

and the topological boundary was shown to hold, more generally, in Lipschitz

domains by Hunt and Wheeden [3].

Attempts to specify precisely the relationship between minimal harmonic

functions and points on 3fi have not been completely successful. Among the

more important contributions in this area is a result of Brelot [1]:

(1) Theorem. If h is a minimal harmonic function in a bounded domain Í2, then

there is at least one point y E 3Í2 such that h is associated to y in the sense that

R% = h. (Rfr is the "reduced function for h at y"; see [2] for an account of the

properties of reduced functions)

One of the objects of this report is to obtain information about the set of

points y E 3Í2 which are associated with a particular minimal harmonic
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function. For the sake of comparison we first recall a more classical associa-

tion of harmonic functions in S2 to points of 3Í2: a nonnegative harmonic

function u in fi has a pole at y E 3Í2 if limsup,^ 6í¡k(x) = oo. We can

easily verify that the poles of a minimal harmonic function cannot be

arbitrarily distributed.

Proposition. If h is a minimal harmonic function in a bounded domain ti, then

the set of poles of h is a connected subset of 3Í2.

Proof. The set P = [y E 3Í2: y is a pole of h) is a closed subset of 3S2. If

yQ G 3fi is one point (guaranteed by (1)) which is associated to h, it is clear

from the construction of the reduced function that y0 E P. Let Y be the

component of P containing y0. Choose an open set T such that

Io. y is contained in T,

2°. P\Y is contained in (f ) , the interior of f,

3°. 3r is smooth.

Sincey0 E T, we have RfnT = h, and it follows that h is equal in ß\r to the

solution of the Dirichlet problem in that set with boundary values

f/z(x)       forx G 3r n £2,

^"io forxG3i2\r.

Since <p(x) is bounded, the maximum principle assures that h is bounded in

ñ\r and, therefore, P = Y is connected.    □

In order to consider the connectivity question for the set of boundary points

associated to a minimal harmonic function (in the sense of (1)) we first develop

a useful consequence of the "minimal" nature of these functions.

(2) Lemma. Let il be a bounded domain in R" and T a closed subset of ß. If h

is a minimal harmonic function in ß with Rh = h, then there is a point

£ G T n 3ß such that R^ = h. (For example, if a "slice" of ß contains enough

information to generate h, there must be a point of 3ß in that "slice" which is

associated to h)

Proof. Let W be an arbitrary neighborhood (in ß) of T n 3ß and suppose

that u(x) > 0 is a superharmonic function in ß such that u > h in W. If

M = sup{h(x): x E (r n ß^W7}, which is finite, then v(x) = u(x) + 2M is a

positive superharmonic function in ß with v (x) > h(x) in a neighborhood of

r in Í2. Since Rh n = h, v(x) > h(x) for all x G fi. Because h is minimal,

there is a y G dû satisfying 7?^ = h, and we have

h = Ri < R> < Rj¡ + R{M = Ryu<u in 0.

It follows that h < R.Y = inf{w > 0, superharmonic in ti: u > h on W) and,

therefore, h = 7?[n8".

Because h is minimal, for any set A C 3S2, either R* = h or R^ = 0. If

£ G T n 3Í2 and 7\jj = 0, there must be a set 0>, open in 3fi, with |

G 6> and R% < A, hence R% = 0. Suppose that Rn = 0 for every £ G T
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n 3ß. Since T n 3ß is compact, there exist £,, £2, ..., £¿. G T n 3ß such

that T n 3ß C Uf=16£.and, therefore,

rnaa <    ui.e, < £ Re  =

/=i

a contradiction. Hence there is at least one £ E T n 3ß with R.\ = A.

We can now prove our main result.

(3) Theorem. // A is a minimal harmonic function on ß, a bounded domain in

R", cAeAi the set E = {y E dû: y is associated to A) is connected.

Proof. Suppose that E = Ex U E2, where Ex, E2 are closed, nonempty,

disjoint subsets of 3ß. Let Tx C T2 be compact neighborhoods of Ex in ß with

T, C r2° and r2 n E2 = 0. Set T = r2\r,°. Since Ex and E2 are nonempty

sets of boundary points associated to A, we have

R¡'nü = R^° = h.

Let u > 0 be a superharmonic function in ß with u > A on T n ß. Then

/ \ _. /AW for* e r2'

\min(A(;t), «(je))        for jc G ß\r2,

is a nonnegative superharmonic function in ß with w > A on T2. It follows

that

k(x) > W(jc) > /?[2(x) = h(x)    for x G fl\r2.

Similarly, u(x) > h(x) for x E Tx° n ß, and, therefore, /?[n£2 = A. By Lem-

ma (2), there must be a point tj G T n 3ß which is associated to A; i.e.,

r/ G E. This is impossible since E = Ex U E2 has empty intersection with T,

and we conclude that E must be connected.    □

In the case of an unbounded domain ß, a few modifications are necessary.

Brelot's Theorem (1) in that case allows for a minimal harmonic function to

be associated to oo, the additional boundary point obtained in the one point

compactification of ß. For a particular minimal harmonic function A in ß, this

means

Rhr = A in ß for every value of r sufficiently large,

(4)
where ßr = ß n {x E R": |x| > r}.

For example, the function h(x,y) = y in the upper half-plane is minimal and

is not associated to any finite boundary point, but does satisfy (4).

The analog of Theorem (3) for unbounded domains can now be stated.

Theorem. // A is a minimal harmonic function in an unbounded domain

ß C R", then the set EC 3ß U {oo} of points to which A is associated is
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connected. (The topology on 3ß U {00} is the one induced by the compactifica-

tion.)

Proof. If F a bounded set, the arguments in (2) and (3) are essentially

unchanged. If E is unbounded and disconnected, let E = F, U E2 as in the

proof of (3), with E2 the unbounded component. Choose I] and T2 to be

compact, bounded neighborhoods of F, with Tx G T2 and T2 n F2 = 0. Then

r = r¡\r2° is bounded with Rh n = h. Lemma (2) follows as before as long

as care is taken to use a point of Ex for the point y associated to h, in which

case R^M is again zero. The lemma and theorem are then completed as before.

In case n = 2, a minimal harmonic function in a domain which is

conformally equivalent to the unit disk has exactly one associated boundary

point, as minimal harmonic functions are preserved under conformai mapping

and the situation in the disk is well known.
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