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THE SOLUTION OF>>2 ± 2" = x3

STANLEY RABINOWITZ1

Abstract. All solutions to the diophantine equation

(*) y2 + y2" = x3;       y = ±1,

are found.

The solution of (*), with n = y = 1, is due to Euler [4], [6, p. 103]. His was

the first solution of a diophantine equation of the form y2 — k = x3, where

the given value of k is neither the square nor the cube of an integer. Table I is

from [5].

Table I. The solution of (*) in some special cases

y= 1 y= -1

n (x, \y\} n {x, \y\)

0 <1,0> 0 <- 1,0>,<0, 1>,<2,3>

1 <3,5> 1 <-l, 1>

2 <2,2>,<5, 11> 2 <0,2>

3 <2,0> 3 <-2,0>,<l,3>,<2,4>,<46,312>

4 no solutions 4 <0,4>

Definitions: Let 9 = 21/3; 9 real. Then by [6, p. 105], Ü = {a + b9 +

c92\a, b,cEZ}is the ring of integers of Q(9). The class number of fi is 1 [1,

p. 427] and therefore Í2 is a unique factorization domain (U.F.D.).

A will be either Z or fi. Hence A is real.

All Latin letters (except Z and Q) will represent elements of Z and all

lower case Greek letters elements of A.

The units of A are ± er (r G Z); e = 1 for A = Z and e = — 1 + 9 for

A = Ö [6, p. 112], [3, p. 304]. Note that e > 0. Let y = ±1.

a\Aß and (a, ß)A are read (respectively) as "a divides ß in A" and "the

greatest common divisor of a and ß in A".

Lemma 1. // a i- 0 or ß i- 0, then a2 + aß + ß2 > 0.

Proof. 4(a2 + aß + ß2) = (2a + ß)2 + 3ß2.
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Lemma 2. (a + ß, a2 - aß + ß\\A3ß2.

Proof. (2/3 - a)(a + ß) + (a2 - aß + ß2) = 3ß2.

Lemma 3. If<p2 = aß, (a, ß)A = 1 and a > 0, then a = ¡u£2; ¡u, = 1 or e.

Proof. Since A is a U.F.D. and a > 0, a = ety2. If /• = 2?, let ju = 1,

| = ety. If r = 2t + I, let ju - e, | = ety.

Lemma 4. // as2 + ¿w + c = 0, iAen è2 - 4ac = ¿2.

Proof. Let d = 2ai + b.

Lemma 5. // (x, 3) = 1, then x3 = ± 1 (mod 9).

Proof, x = ±1 + 3k. Thus x3 = (± 1 + 3Â:)3 = (± l)3 = ±1 (mod 9).

Lemma 6. If (a, b) = 1, then (a, b)a= 1.

Proof. There exist integers e and / such that ea + fib = 1.

Lemma 7. If2xa + 2>* + 2zc = 0, Wîere (aèc, 2) = I, and 0 < x < y < z,

then x = y < z.

Proof. 2'|2*a. Thus x > y.

If y = z, then a + b + c = 0. But a + b + c is odd.

Note that if (*) holds, then, since 2" = y(x3 — y2), n > 0.

Proposition 1.

y2 + 23k = x3;    x odd =* <fc, x, |j|> = <0, 1, 0>.

y2 - 23k = x3;    xodd=>(k,x, \y\) = <0, -1,0>, <1, 1, 3> or <3, -7, 13>.

Proof. Using Table I, we may assume that k > 1. Now

y2= ab;        a = x - y2*,   ô = x2 + y2*x + 22\

Hence (ab, 2) =  1. By Lemma 1, b > 0. Therefore a > 0.  By Lemma 2,

(a, o)|3 • 22\ Thus (a, b) = 1 or 3.

. Suppose first that (a, b) = 3. Then 3|j and (.y/3)2 - (a/3)(Z>/3). By

Lemma 3, a = 3w2 and b = 3u2. Hence v is odd. Eliminating x from the

latter two equations,

3«4 + y3 • 2V + (22* - v2) = 0.

Thus by Lemma 4, 12u2 - 3 • 22* = d2. Therefore d = 2D and since & > 1,

3u2- D2 = 3 • 22k~2 = 0 (mod 4). But since v is odd, D is odd and, hence,

3ü2 - Z)2 = 2(mod4).

Thus (a, b) = 1. Therefore a = u2 and o = t>2, implying (mu, 2) = 1.

Eliminating x,

(1) u4 + 3 ■ 2kyu2 + (3 ■ 22k - v2) = 0.

By Lemma 4, 4u2 - 3 • 22k = ¿2. Thus d = 2D and

(2) ü2 - D2 = 3 • 22*"2.
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Since k > 2 and v is odd, D is odd. Also 3|(u - D)(v + D). Let V = ± v

where 3| V - D. By (2), V - D = 3 • 2SS and F + D = 2'<S; 5 + / = 2k - 2

and S = ±1. Since (DF, 2) = 1, j > 1 and / > 1. Hence

(3) D = 5(2'"' - 3 -2s~l).

Thus either (i > 1 and s = 1) or (/ = 1 and í > 1). Solving (1) for u2,

(4) u2 = -y3 • 2*_1 ± £>.

Suppose first that t > 1 and s = 1. Hence f •= 2üc — 3 and by (3), D =

5(22*-4 _ 3) Thus k y 2 and by (4))

u2= -y3 -2*-1 ± (22/c-4- 3).

U k> 3,u2= ±3 (mod 8). Therefore k = 3 and w2 = ± 12 ± 1, which is

impossible.

Thus t = 1 and í > 1. Hence s = 2A: - 3 and by (3), Z» = 5(1 - 3 • 22*-4).

Thus k > 2 and by (4),

(5) u2= ±(\ -3-22k~4)- y3-2k~l.

The first minus sign cannot hold modulo 3.

If y = 1, then u2 < 0. Hence y = - 1. By (5), u2 = 3(2*"' - 22*"4) + 1.

If k > 3, then 2A: — 4 > A: — 1 and thus u2 < 0. Hence k = 3 and u2 = 1.

Since a = w2, x = m2 - 2k = -7. Therefore^2 = x3 + 23k = 169.

Proposition 2.

/ + 23*+1 = x3;   xodd^{k,x, \y\} - <0, 3, 5>.

/ - 23*+1 = x3;    x odd^{k, x, \y\) = <0, - 1, 1) or <2, 17, 71>.

Proof. Suppose 3\y. Then (x, 3) = 1 and by Lemma 5,

0 = y2 = x3 ±2-%k = ±1±2 (mod 9).

This contradiction shows that (y, 3) = 1. Obviously y is odd and so by

Lemma 6, (y, 6)n = 1. By Table I we may assume that k > 0. Now

y2 = aß;        a = x - y2k9,   ß = x2 + y2k9x + (2k9)2.

By Lemma 1, ß > 0 and thus a > 0. By Lemma 2, (a, )ß)S2|i23(2/cö)2. But

(aß, 6)0 = 1. Hence (a, ß)a = 1. By Lemma 3,

a = n(a + b9 + c92f;       n=\    or    -1 + 9.

We may assume that c > 0 since a = ¡x(— a - b9 - c92)2.

If jit = - 1 + 9, we obtain

x = -a2 - Abe + 2Z>2 + 4ac    (=> a is odd)

and

— y2* = —2c2 — 2ab + a2 + Abe    (=> a is even, since k > 0).

Hence ft ■ 1. Therefore

(6) x = a2 + Abe   (=> a is odd),
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(7) - y2*-1 = c2 + ab,

and

(8) 0 = b2 + 2ac   (=> o is even).

If b = 0, then by (8), c = 0. This contradicts (7). Thus b = 2sB; s > 1 and

5 is odd. From (8), c = 22j"'C; C odd. C > 0, since c > 0. By (8) and (7),

(9) 0=52 + aC

and

(10) - y2*_1 = 24i~2C2 + 2^5.

Let/) be a prime of Z. If/>|C, then by (9),p\B and by (10),/>|2*_l. Therefore

C = 1. Hence a = - B2 and -y2k~i = 24j"2 - 2SB3. Since s > 1, As - 2 >

s. By Lemma 7, k - I = s. Hence (-y)3 + B3 = 2(2J-')3. [2, pp. 70-72]

gives 5 = - y = 2,_1. Thus y - -1, ^=1, s = 1, A: = 2, a = -1, c = 2

and b = 2. By (6), x - 17 and therefore |.y| = 71.

Proposition 3.

y2 + 23*+2 = x3.    x0dd^,{k,x, \y\y = <0, 5, 11>.

_V2 — 23*+2 = x3;    x odd,has no solutions.

Proof. Assume A; > 0 (see Table I).

y2=aß;        a = x - y2k02,   ß = x2 + y2k92x + (2k92f.

As in Proposition 2, a = ix(a + ¿>0 4- cö2)2; ft = 1 or — 1 + 9 and b > 0.

If ft - -1 + 0, then

x = - a2 — 4èc + 2è2 + 4ac    (=> a is odd)

and

0 = -2c2 - 2ab + a2 + 4Z>c    (=> a is even).

Thus ju = 1 and

(11) x = a2 + 46c    (=> a is odd),

(12) 0 = c2 + ab,

and

(13) - y2* = o2 + 2ac    (=> 6 is even).

By (12), c is even.

If c = 0, then by (12), b = 0. But this contradicts (13). Thus c = 2*C; s > 1

and C odd. By (12), b = 22sB; B odd. Therefore £ > 0. By (12) and (13),

0 = C2 + aB and

- y2* = 24sB2 + 2s+xaC.

As in Proposition 2, B = \. Hence a = - C2 and  -y2* = 2*- 2,+ 1C3.

Since 4s > s + 1, k = 5 + 1 and (-y)3 + C3 = 4(2i_1)3. This equation has

no solutions by [2, pp. 70-72].
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Theorem. All the solutions of (*) are given in the following table with

x = 2% and y = ±2hf.

Explanation of Table II. If e = 0 (respectively/ = 0), then the value of g

(respectively h) is irrelevant, n is given modulo 6 and is nonnegative.

The solutions are numbered for reference in the proof.

Table II

Y- 1

n (modulo 6)

0

1

2

2

3

3g 2h

n

n - 1

n + 1

H-2

n

n - 1

n

n-2

0

5
1

11

0

Solution

Number

1

2

3

4

5

Y- -1

n (modulo 6) 3g 2/i
Solution

Number

0

0

0

1

\(n

2

3(n

3
3

3

3

4

7)

9)

n + 3

n - 1

n -7

n - 9

n

n-3

n

n

- 1

0
1

- 1

17

0
- 7

- 1

1
1

23

0

n

n

n - 1

n-1

n

n-9

n-3

n + 1

n + 3

n

0
1

3

1

71

1

13

0

3

1

39

1

6
7

8

9
10

11

12

13

14

15

16

17

Proof. By direct calculation the above can be shown to be solutions.

Suppose now that (*) holds.

If x = 0, then y = — 1 and y2 = 2". Therefore n is even implying solution

7, 11 or 17.

If y = 0, then 3|« yielding solution 1, 5, 6 or 13.

Suppose now that xy =£ 0. Therefore x = 2ge and \y\ = 2Hf; e/odd. By (*),

(14) 22*/2 + Y2" = 23%3.

By Lemma 7,

(15) 2h = 3g < n,

(16) 2h = n< 3g,
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or

(17) 3g = n < 2h.

If (15), then 2h = 3g. = 6q and by (14), f2 + Y2"-6« = e3. Propositions 1, 2

and 3 imply solution 2, 4, 14, 12, 9 or 10.

If (16), then n = 6w + 2/; / = 0, 1 or 2. So (2/)2 + Y22' = (2g~2we)3. Table

I gives solution 3 or 8.

If (17), then n = 6w + 3j; y = 0 or 1. So (2h~3wf)2 + Y23y = (24?)3. Table I

yields solution 15 or 16.
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