A CURIOSITY CONCERNING THE DEGREES OF THE CHARACTERS OF A FINITE GROUP

K. L. FIELDS

ABSTRACT. Let G be a finite group with irreducible characters $\{\ldots, \chi, \ldots\}$ and $K = \mathbb{Q}(\ldots, \chi, \ldots)$ the field generated over the rationals by their values. We will prove:

If
$$K = \mathbf{Q}$$
 (or if $[K: \mathbf{Q}]$ is odd) then $\prod_{\chi(1) \text{ odd}} \chi(1)$ is a perfect square.

More generally,

THEOREM. (a)

$$(-1)^{(\Sigma_{\chi}(1)-(m+1))/2} \prod_{\chi(1) \text{ odd}} \chi(1)$$

is a square in K if |G| is even.

(b) $(-1)^{(|G|-1)/2}|G|$ is a square in K if |G| is odd.

[Recall $|G| = \Sigma \chi(1)^2$ so that $|G| \equiv \Sigma \chi(1) \mod 2$, and so $\Sigma \chi(1) \equiv m + 1 \mod 2$ where *m* denotes the number of involutions in G.]

PROOF OF THEOREM. Let F be any splitting field for G such that char $F \not||G|$. Consider the F-vector space FG on which we have the nondegenerate symmetric bilinear form defined by $B(g, h) = \rho(gh)$ for $g, h \in G$, where ρ is the trace of the regular representation of G. So

$$B(g, h) = \begin{cases} 0, & g \neq h^{-1}, \\ |G|, & g = h^{-1}, \end{cases}$$

and with respect to this basis of group elements, *B* is the direct sum of (|G| - (m + 1))/2-matrices $\begin{pmatrix} 0 & |G| \\ |G| & 0 \end{pmatrix}$ and m + 1 (1×1) -matrices (|G|). So the discriminant of *B* is $(-1)^{(|G|-(m+1))/2}|G|^{|G|}$. But, if we identify *FG* with the direct sum $\sum M_{\chi(1)}(F)$ of $(\chi(1) \times \chi(1))$ matrix algebras over *F*, and if e_{ij}^{χ} denote the matrix units, then

$$B\left(e_{ij}^{\chi}, e_{kl}^{\lambda}\right) = \begin{cases} \chi(1), & i = l, j = k, \chi = \lambda, \\ 0, & \text{otherwise.} \end{cases}$$

So with respect to this basis, B is the direct sum of $(\chi(1)^2 - \chi(1))/2$ -matrices $\binom{0}{\chi(1)} \binom{\chi(1)}{0}$ and $\chi(1)$ (1×1) -matrices $(\chi(1))$, and so has discriminant

Received by the editors May 21, 1975 and, in revised form, October 21, 1975. AMS (MOS) subject classifications (1970). Primary 20C15.

[©] American Mathematical Society 1977

$$\prod_{x} (-1)^{(\chi(1)^2 - \chi(1))/2} (\chi(1)^2)^{(\chi(1)^2 - \chi(1))/2} \chi(1)^{\chi(1)}$$
$$= (-1)^{(|G| - \Sigma_{\chi}(1))/2} \prod_{\chi} \chi(1)^{(\chi(1)^2)}.$$

Hence

$$(-1)^{(|G|-(m+1))/2}|G|^{|G|}$$
 and $(-1)^{(|G|-\Sigma\chi(1))/2}\prod\chi(1)^{(\chi(1)^2)}$

differ by a square in F.

If |G| is odd, then the nontrivial characters occur in conjugate pairs, so that $\prod \chi(1)^{(\chi(1)^2)}$ is a square; moreover, since $\sum \chi(1) = 1 + 2\sum_{i=1}^{(c-1)/2} (2k_i + 1)$ where c denotes the number of conjugacy classes,

$$\sum \chi(1) \equiv c \mod 4.$$

Also, (Burnside) $|G| \equiv c \mod 16$, so we have that $(-1)^{(|G|-1)/2} |G|$ is a square in F.

If char F = 0, then the intersection of all splitting fields F is just K. [Given a simple algebra finite dimensional over a number field L, the Grunwald-Wang and Tchebotarev Density Theorems imply the existence of a prime p in L and maximal subfields F_1 and F_2 such that p splits completely in F_1 but is divisible by only one prime of F_2 ; hence $F_1 \cap F_2 = L$. An analogous result holds for a semisimple algebra all of whose simple components have the same center; in the case of a group algebra, this common center can be chosen to be K above], and so our Theorem follows.

REMARKS. (1) If all the characters of G are real, we must have

$$(-1)^{(\Sigma\chi(1)-(m+1))/2} = 1$$
, i.e., $\sum \chi(1) \equiv m+1 \mod 4$.

(2) If F can be chosen to be real, we have that

$$\sum \frac{\chi(1)^2 - \chi(1)}{2} = \frac{|G| - (m+1)}{2} = \text{Witt index of } B,$$

and so $\Sigma \chi(1) = m + 1$.

Both of these facts follow also from the classical Frobenius-Schur count of involutions.

(3) If G is cyclic of odd order n, then Theorem (b) states that

$$(-1)^{(n-1)/4}\sqrt{n} \in \mathbf{Q}(\xi_n).$$

(4) Recall that for even |G|, there are an odd number of nonprincipal, nonconjugate characters having both odd degree and an odd number of conjugates [Proc. Amer. Math. Soc. **30** (1971), 247-248]. In other words, $\prod_{\chi(1) \text{ odd}\chi(1)}$ is nontrivial, and is never square solely by virtue of conjugate characters.

(5) It would be of interest to find necessary and sufficient conditions on G to insure that every character has an odd number of conjugates (this implies

that the characters are real) i.e., that [K : Q] is odd. It would also be of interest to determine exactly the discriminant of K. Also, it is unknown which abelian extensions of Q appear as $K = Q(\ldots, \chi, \ldots)$ for some finite group G.

(6) We thank F. Gross and G. Walls for simplifying our original statement for odd |G|.

DEPARTMENT OF MATHEMATICS, RIDER COLLEGE, LAWRENCEVILLE, NEW JERSEY 08648