A CURIOSITY CONCERNING THE DEGREES OF THE CHARACTERS OF A FINITE GROUP

K. L. FIELDS

Abstract. Let G be a finite group with irreducible characters $\{\ldots$, $\chi, \ldots\}$ and $K=\mathbf{Q}(\ldots, \chi, \ldots)$ the field generated over the rationals by their values. We will prove:

$$
\text { If } K=\mathbf{Q}(\text { or if }[K: \mathbf{Q}] \text { is odd }) \text { then } \prod_{\chi(1) \text { odd }} \chi(1) \text { is a perfect square. }
$$

More generally,
Theorem. (a)

$$
(-1)^{\left(\Sigma_{\chi}(1)-(m+1)\right) / 2} \prod_{\chi(1) \text { odd }} \chi(1)
$$

is a square in K if $|G|$ is even.
(b) $(-1)^{(|G|-1) / 2}|G|$ is a square in K if $|G|$ is odd.
[Recall $|G|=\Sigma \chi(1)^{2}$ so that $|G| \equiv \Sigma \chi(1) \bmod 2$, and so $\Sigma \chi(1) \equiv m+1$ mod 2 where m denotes the number of involutions in G.]

Proof of Theorem. Let F be any splitting field for G such that char $F \dagger G \mid$. Consider the F-vector space $F G$ on which we have the nondegenerate symmetric bilinear form defined by $B(g, h)=\rho(g h)$ for $g, h \in G$, where ρ is the trace of the regular representation of G. So

$$
B(g, h)=\left\{\begin{array}{cl}
0, & g \neq h^{-1} \\
|G|, & g=h^{-1}
\end{array}\right.
$$

and with respect to this basis of group elements, B is the direct sum of $(|G|-(m+1)) / 2$-matrices $\left(\begin{array}{c}0 \\ |G| \\ |G| \\ 0\end{array}\right)$ and $m+1(1 \times 1)$-matrices $(|G|)$. So the discriminant of B is $(-1)^{(|G|-(m+1)) / 2}|G|^{|G|}$. But, if we identify $F G$ with the direct $\operatorname{sum} \Sigma M_{\chi(1)}(F)$ of $(\chi(1) \times \chi(1))$ matrix algebras over F, and if $e_{i j}^{x}$ denote the matrix units, then

$$
B\left(e_{i j}^{\chi}, e_{k l}^{\lambda}\right)= \begin{cases}\chi(1), & i=l, j=k, \chi=\lambda, \\ 0, & \text { otherwise } .\end{cases}
$$

So with respect to this basis, B is the direct sum of $\left(\chi(1)^{2}-\chi(1)\right) / 2$-matrices $\left(\begin{array}{cc}0 & x^{(1)} \\ 0\end{array}\right)$ and $\chi(1)(1 \times 1)$-matrices $(\chi(1))$, and so has discriminant

[^0]AMS (MOS) subject classifications (1970). Primary 20C15.

$$
\begin{gathered}
\prod_{x}(-1)^{\left(x(1)^{2}-x(1)\right) / 2}\left(x(1)^{2}\right)^{\left(x(1)^{2}-x(1)\right) / 2} x(1)^{x(1)} \\
=(-1)^{\left(|G|-\Sigma_{x}(1)\right) / 2} \Pi x(1)^{\left(x(1)^{2}\right)} .
\end{gathered}
$$

Hence

$$
(-1)^{(|G|-(m+1)) / 2}|G|^{|G|} \text { and }(-1)^{(|G|-\Sigma x(1)) / 2} \Pi \chi(1)^{\left(x(1)^{2}\right)}
$$

differ by a square in F.
If $|G|$ is odd, then the nontrivial characters occur in conjugate pairs, so that $\Pi \chi(1)^{\left.\chi(1)^{2}\right)}$ is a square; moreover, since $\Sigma \chi(1)=1+2 \sum_{i=1}^{(c-1) / 2}\left(2 k_{i}+1\right)$ where c denotes the number of conjugacy classes,

$$
\sum \chi(1) \equiv c \bmod 4 .
$$

Also, (Burnside) $|G| \equiv c \bmod 16$, so we have that $(-1)^{(|G|-1) / 2}|G|$ is a square in F.
If char $F=0$, then the intersection of all splitting fields F is just K. [Given a simple algebra finite dimensional over a number field L, the GrunwaldWang and Tchebotarev Density Theorems imply the existence of a prime p in L and maximal subfields F_{1} and F_{2} such that p splits completely in F_{1} but is divisible by only one prime of F_{2}; hence $F_{1} \cap F_{2}=L$. An analogous result holds for a semisimple algebra all of whose simple components have the same center; in the case of a group algebra, this common center can be chosen to be K above], and so our Theorem follows.
Remarks. (1) If all the characters of G are real, we must have

$$
(-1)^{(\Sigma x(1)-(m+1)) / 2}=1 \text {, i.e., } \sum \chi(1) \equiv m+1 \bmod 4 \text {. }
$$

(2) If F can be chosen to be real, we have that

$$
\sum \frac{\chi(1)^{2}-\chi(1)}{2}=\frac{|G|-(m+1)}{2}=\text { Witt index of } B,
$$

and so $\Sigma \chi(1)=m+1$.
Both of these facts follow also from the classical Frobenius-Schur count of involutions.
(3) If G is cyclic of odd order n, then Theorem (b) states that

$$
(-1)^{(n-1) / 4} \sqrt{n} \in \mathbf{Q}\left(\xi_{n}\right) .
$$

(4) Recall that for even $|G|$, there are an odd number of nonprincipal, nonconjugate characters having both odd degree and an odd number of conjugates [Proc. Amer. Math. Soc. 30 (1971), 247-248]. In other words, $\Pi_{x(1) \text { odd }} \chi(1)$ is nontrivial, and is never square solely by virtue of conjugate characters.
(5) It would be of interest to find necessary and sufficient conditions on G to insure that every character has an odd number of conjugates (this implies
that the characters are real) i.e., that $[K: \mathbf{Q}]$ is odd. It would also be of interest to determine exactly the discriminant of K. Also, it is unknown which abelian extensions of \mathbf{Q} appear as $K=\mathbf{Q}(\ldots, \chi, \ldots)$ for some finite group G.
(6) We thank F. Gross and G. Walls for simplifying our original statement for odd $|G|$.

Department of Mathematics, Rider College, Lawrenceville, New Jersey 08648

[^0]: Received by the editors May 21, 1975 and, in revised form, October 21, 1975.

