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POLYNOMIAL DENSITY IN BERS SPACES

JACOB BURBEA1

Abstract. Let D be a bounded Jordan domain such that f j" DK¡)~'1 dx dy

< oo for q > 1. Here XD(z) is the Poincaré metric for D. Define A%(D), the

Bers space, to be the Freenet space of holomorphic functions / on D, such

that ll/H^p = f S d^d'^W dxdy is finite, 0 < p < oo, qp > 1. It is well
known that the polynomials are dense in A¡¡(D) for qp > 2. We show that

they are dense in A^(D) for qp > 1 irrespective whether the boundary of D

is rectifiable or not.

1. Introduction. Let D be a bounded Jordan domain such that

(1.1) ff\2D-«(z)dxdy<ca
D

where \D(z) is the Poincaré metric for D. Since A¿"'(z) < WA/tt , where A is

the area of D, it follows that (1.1) obviously holds for all q > 2. Hence we

can assume that (1.1) holds for all q > q0 where 1 < q0 < 2 (the case q < 1

is, of course, trivial). Let 9: D —>■ U be a Riemann mapping of D onto U, the

unit disc, and let tp = 9~l. Then

(1.2) jJX2D-"(z)dxdy = jj(l -|h»|2)'"V(w)|'A«*.
D U

A well-known inequality due to Hardy and Littlewood [5] states that for

q > 1, r > 0,

(1.3) {//(i -Hf'lM**)''^ <-MU>

where c is a constant depending on q and r and || || r/9 is the Hr^q norm. Here

Hr/« = Hr/9(U) is the r/f Hardy class.

Since for Jordan domains the rectifiability of the boundary is equivalent to

uV G H\U) [3, p. 44], it follows from (1.2) and (1.3) that

Proposition 1. Let D be a bounded rectifiable Jordan domain. Then (1.1)

holds for all q > 1.

However, the property that (1.1) holds for all q > 1 is not characteristic to

rectifiable domains. In fact,

_
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Proposition 2. There is a domain D, bounded by a nonrectifiable Jordan

curve, such that (1.1) holds for all q > 1.

Proof. According to Hedberg [6] there is such a domain D with

(1.4) fj(l-\ï(z)\2)q~2dxdy<n
D

for all q > 1. Since (1.1) holds for all q > 2 we can assume that 1 < q < 2.

An application of Holder's inequality yields

//(l -\w\2)q~2\V(w)\qdudv
u

<{fJ(l-\»\T^)\2dudv}9/2-(^)l-9/2.

The proposition now follows from (1.4).

We shall only consider those domains D such that (1.1) holds for all q > 1,

those D for which (1.1) holds for q > q0 > 1 will be considered elsewhere.

For 0 < p < oo and qp > 1 we define AP(D), the Bers space, as the Fréchet

space of holomorphic functions f(z) on D, "normed" by

\\ñq,P-{¡i^-qP(zV^)\Pdxdy^P.

Clearly AP(D) is a Banach space for 1 < p < oo, qp > 1, and it is a Fréchet

space for 0 < p < 1, qp > 1, with the usual metric d(f,g) = ||/- g\\pp,

f, g E AP(D). Also, since D is bounded, the assumption about (1.1) implies

that the polynomials belong to AP(D) for all 0 < p < oo and qp > 1.

The question of polynomial density in AX(D) has been considered by

various authors. For q > 2, Bers [2] and Knopp [7] proved that the polynomi-

als are dense in AX(D) without any assumption on the mapping function \p.

Later Sheingorn [10] proved that the polynomials are dense in AX(U*),

1 < q < oo, where U* is a special Jordan domain introduced first by Earle

and Marden [4] and used by Knopp [7] to prove his main lemma. Metzger [8]

proved that if t// e HX(U) and q > § then the polynomials are dense in

AX(D). Recently, Metzger [9] was able to improve his result, and he actually

showed that if \p' E HX(U) then the polynomials are dense in AX(D) for all

q > 1. Our contribution in this paper is in showing that the polynomials are

dense in AX(D) for all q > 1 without any assumption on the boundary

behavior of \p', and, in view of Propositions 1 and 2, Metzger's results are

obtained as a special case. In fact we will prove

Theorem 1. Let D be a bounded Jordan domain. Then the polynomials are

dense in AP(D) for 0 < p < oo, qp > 1.

In order to prove this theorem we consider the space %P(D) = Ap,p(D)

instead of Ap. Therefore, %P(D) is the Fréchet space of holomorphic

functions f(z) on D normed by



POLYNOMIAL DENSITY IN BERS SPACES gi

where q > 1, 0 < p < oo. Here ||1||,, = ffDXl~"(z) ¿¿c <iy < oo for all 9 >

1.

Using this notation, Theorem 1 can be restated as follows:

Theorem 1'. Let D be a bounded Jordan domain. Then the polynomials are

dense in %pq(D) for 0 < p < 00, q > 1.

2. Auxiliary facts. In the case q > 2, Theorem 1' was actually proved by

Bers [2] although his result is stated for only the case /? = 1.

Lemma 1 (Bers). Let D be a bounded Jordan domain. Then the polynomials

are dense in %pq(D)for 0<p<oo,q>2.

The following lemma is by now standard.

Lemma 2. The polynomials are dense in %pq(U) for 0 < p < 00, q > 1.

Using the Carathéodory-Walsh theorem [11, p. 36] we can show (see also

[8], [10])

Lemma 3. Let 0 < p < 00, q > 1. The polynomials are dense in %P(D) if

and only if (9')g//p is in the 3C¡"(D)-closure of the polynomials.

The following technical lemma is needed for proving the main theorem.

Lemma 4. Let a > 0 and I < s < 00 such that

(2.1) (1 - l/a)s = 1 - ß/2,       Q > 1.

//

(2.2) s(l + q - 2/a) > 1,

then

(2.3) %^(D)c%p(D),       q>l,

the injection being continuous. If also

(2.4) s[q +4(1 - l/a)] < 3,

then (9y/p is in %"¿(D).

Proof. We have

\\Kp=Hx2o~ya+1/a~q\f\Pdxdy-
D

An application of Holder's inequality with 1 < s < 00 and s' = s/(s - 1)

yields

|/K,<{//^°-1/*ir**},/<

X¡IJX2D(x/-"/2)s/(s-x)dxdy\{S
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The first integral on the right-hand side is the %P£(D) norm, as (2.1) shows.

The second integral is finite if 2(1 /a - q/2)s/(s — 1) < 1 which is exactly

(2.2). Therefore, (2.3) is proved. We now show that (<t>')q/p is in %"q(D) under

the above conditions. We, of course, can assume that 0 G D and that

</>(0) = 0. Now,

îi+y^-ifw-^imfdxdy
D

=//(!- M2)20/"~1)y(w)r'~,(!+i~2/,") du dv-
u

Since 1 < s < oo, (2.2) implies that the exponent of ^'(hOI in the above

integral is negative. Also,  since \p is a bounded schlicht function with

xp(0) = 0,  it follows that \\¡>'(w)\ > M(\ - \w\2) for all w E U for some

positive constant M. Therefore

H*v"C< «.//c -i-ff"-*-"**.
u

for another positive constant Mx. The last integral is finite if and only if (2.4)

holds. This concludes the proof of the lemma. Note, however, that conditions

(2.1), (2.2), and (2.4) are independent of p (0 < p < oo).

3. Proof of Theorem 1'. The idea of the proof is to perturb a and s, subject

to the restrictions of Lemma 4, so that we have polynomial approximation in

%pj(D), and it suffices, according to Lemma 3, to show that (<b')q/p is in ,

%pj(D). The proof is done by successive perturbations. The result of Metzger

[8] will be obtained as a special case of the first perturbation. Corresponding

to Lemma 4 we let

an = 2 —^ '       « - 0,1,... ;

Q0 = 2,    Qn > 1 + -^ ,       « = 1,2,...,

and

sn > 1,    (1 - \/an)sn = 1 - QJ2,       n - 0, 1.

Note that s0 is free except, of course, that s0 > 1. We now proceed by

induction on n  to show that polynomials are dense in  %P(D) for all

0 < p < oo and all q > 1 + \/(n + 2).

For n = 0, a0 = 1, Q0 = 2 and s0 > 1. Using Lemma 1 we can assume that

1 < q < 2. According to Lemma 1 the polynomials are dense in %P¿"(D) =

3(f °(£>). Using Lemma 4, (4>')q/p is in ^«(D) if s0(q - 1) > 1 and sQq < 3,

that is, if \/(q — 1) < s0 < 3/q. Our assumption 1 < q < 2 guarantees the

existence of such sQ > 1. Therefore (<¡>')'l/p E ^"(D) if q > 3/2 and it

follows by Lemmas 3 and 4 that the polynomials are dense in %P(D) for all

0 < p < oo and q > 3/2. Assume now we have proved that the polynomials

are dense in %P(D) for all 0 < p < oo and all q > 1 + \/(k + 1), k =
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1, 2, . . ., n. We shall show that this is true also for q > 1 + l/(n + 2). Then

we can assume that 1 < q < 2/an because 2/a„ = 1 + 2/(n + 2) > 1 +

l/(n + 1). Since Q„ > 1 + l/(/i + 1) it follows from the induction hypothe-

sis that the polynomials are dense in %P£(D). By Lemma 4, (9')q/p is in

%%(D) if s„(l + q - 2/an) > 1 and s„[q + 4(1 - l/a„)] < 3; that is, if

1 3

(31) 1 + q - 2/«„ < '« % + 4(1 - l/«„) '

and our choice of q (1 < q < 2/a„) shows that (3.1) is contained in the range

of 1 < sn < (n + 2)/(n + 1) if and only if q > 1 + l/(« + 2) and then by

Lemmas 3 and 4 the theorem follows.

4. Concluding remarks. We first note that Theorem 1 has the following

Corollary 1. Let G be a Fuchsian group acting on D. Then the set of

Poincaré series of polynomials is dense in AX(D, G), q > 1 (cf. Bers [1] and

Knopp [7] for the appropriate formulation).

If we introduce the class EP(D) as, for example, in Duren [3, p. 168], then

EP(U) = HP(U), 0 < /? < oo. If D is a bounded Jordan domain then E"(D)

is a Fréchet space of holomorphic functions on D normed by

II4%=Sup/|/WI>I
r<\ Jyr

where yr is the image under \¡/ of the circle |w\ = r. Since AP(D) and Ex/q(D)

are preserved under the same isometry induced by conformai mappings, it

follows immediately from (1.3) that Ex/q(D) c AP(D), 0 < /? < oo, qp > 1.

Using Theorem 1, we obtain

Corollary 2. E1/q(D) is dense in AP(D), 0 < p < oo, qp > 1.

Bibliography

1. L. Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups, Amer.

J. Math. 87 (1965), 196-214. MR 30 #4937.
2.   _ , A non-standard integral equation with applications to quasi-conformal mappings,

Acta Math. 116 (1966), 113-134. MR 33 #273.
3. P. L. Duren, Theory of Hp spaces, Pure and Appl. Math., vol. 38, Academic Press, New York

and London, 1970. MR 42 #3552.
4. C. J. Earle and A. Marden, Projections to automorphic functions, Proc. Amer. Math. Soc. 19

(1968), 274-278. MR 37 #412.
5. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34

(1931), 403-439.
6. L. I. Hedberg, Weighted mean square approximation in plane regions, and generators of an

algebra of analytic functions, Ark. Mat. 5 (1965), 541-552. MR 36 #2808.
7. M. I. Knopp, A corona theorem for automorphic forms and related results, Amer. J. Math. 91

(1969), 599-618. MR 40 #4450.
8. T. A. Metzger, On polynomial approximation in Aq(D), Proc. Amer. Math. Soc. 37 (1973),

468^170. MR 46 #9361.

9.   _ , On polynomial density in Aq(D), Proc. Amer. Math. Soc. 44 (1974), 326-330. MR
49 #5375.



94 JACOB BURBEA

10. M. Sheingorn, Poincaré series of polynomials bounded away from zero on fundamental region,

Amer. J. Math. 95 (1973), 729-749. MR 49 #9194.
11. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain,

Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R. I., 1935.

Department of Mathematics, Pennsylvania State University, University Park, Penn-

sylvania 16802

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260


