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ON THE TRACE OF AN IDEMPOTENT IN A

GROUP RING

GERALD H. CLIFF AND SUDARSHAN K. SEHGAL

Abstract. Let KG be the group ring of a polycyclic by finite group G over

a field K of characteristic zero. It is proved that if e = 2 e(g)g is a nontrivial

idempotent in KG then its trace e(l) is a rational number r/s, (r,s) = 1, with

the property that for every prime divisor p of s, G has an element of order p.

This result is used to prove that if R is a commutative ring of characteristic

zero, without nontrivial idempotents and G is a polycyclic by finite group

such that no group order ¥= 1 is invertible in R, then RG has no nontrivial

idempotents.

1. Let KG be the group ring of a group G over a field K. By the trace of an

element a = 2g oi(g)g of KG is understood a(\), the coefficient of the identity

in a. The following two statements regarding the trace of an idempotent in KG

are well known.

Theorem (ZalesskiÏ [7]). The trace of an idempotent in KG lies in the prime

subfieldofK.

Theorem (Kaplansky, see [4]). If K is afield of characteristic zero, the trace

of a nontrivial idempotent in KG lies strictly between 0 and 1.

We expect that in the characteristic zero case one should be able to say

more, namely the denominator of the trace of a nontrivial idempotent is a \G\-

number, in the sense that for every prime p dividing this denominator, G has

an element of order p. This statement is proved in Theorem 1 for polycyclic

by finite groups. We apply this to prove that if R is a unital commutative ring

of characteristic zero without nontrivial idempotents, with the property that no

group element ^ 1 has order invertible in R and G is polycyclic by finite, then

RG has no nontrivial idempotents. This is proved for supersolvable groups in

[3] and [5].

2. Results.

Theorem 1. Let KG be the group ring of a polycyclic by finite group G over a

field K of characteristic zero. Let e = "£  e(g)g be a nontrivial idempotent. Write
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e(l) = r/s with (r,s) = 1. If a prime p divides s, then there exists 1 # g G G of

p-power order with e(g) ^ 0.

Theorem 2. Let RG be the group ring of a polycyclic by finite group G over a

commutative unital ring R of characteristic zero. Suppose that R has no nontrivial

idempotents and that no group element # 1 has order invertible in R. Then RG

has no nontrivial idempotents.

3. Proof of Theorem 1. Denoting conjugate elements g and h of G by g — h,

write for a = 2g <*(g)g G KG, a(g) — 2/,~Ä «CO, the sum of coefficients of

all conjugates of g in a. The following result is well known.

Lemma 1 (Formanek [2]). // e = 2 e(g)g = e1 G KG and G is Noetherian

then e\g) = 0 for g of infinite order.

Now let us suppose that G/A is finite and A is polycyclic. Then the number

of infinite cyclic factors in any normal series of A is invariant, called the

Hirsch number of G. We shall prove Theorem 1 by induction on the Hirsch

number of G. We shall prove that if p is a prime divisor of 5 then there is an

element g G G of /»-power order with ë(g) ¥= 0, g ¥= 1.

Suppose that the Hirsch number of G is > 1; then it is easy to see by

induction on the solvability length of A that G has a torsion-free normal

subgroup TV # {1} and therefore G/N has smaller Hirsch number. Let ë be the

image of e under the natural map KG -* K(G/N). Then due to Lemma 1,

e(l) — e(l) = r/s. Therefore, by induction, there is a g G G/N of /»-power

order such that 0 ¥= e(g) = 2 ë(h), a sum over certain h such that h is

conjugate to g.

Since again due to Lemma 1, ë(h) = 0 for elements h of infinite order, we

have that e(h0) ¥= 0 for some h0 of finite order. This h0 clearly has /»-power

order. Thus it remains to prove

Lemma 2. // G is finite and p is a prime divisor of s then there exists a

1 # g G G of p-power order such that e\g) =£ 0.

We shall need

Lemma 3 (Hattori [1]). Suppose that e = 2 e(g)g = e2 E KG where G is

finite and K has characteristic zero. Let x be the character of G afforded by KGe.

Then for g El G we have |Cc(g)|ê(g) = x(g ) where CG(g) denotes the

centralizer of g in G.

Proof. For any a G KG and h G G, let Ta(h): KG -* KG be the AMinear

map which sends v to hya. Then Te(h) acts on KGe as left multiplication by h

and annihilates KG(\ — e). Since KG = KGe © A"G(1 - e), choosing a suita-

ble basis of KG, we see that the trace of the linear transformation Te(h) is equal

to x(h)-
Now Te(h) — 2» e(g)T(h) and T(h) sends x to hxg for any x G G.

Therefore T(h) permutes the elements of G, so its trace is the number of

x G G with x = hxg. But x = hxg if and only if x    h    x = g. So the trace
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of T(h) is 0 if and only if g is not conjugate to h~~ and is |Cc(/i)| otherwise.

Hence

x(h)=  2  e(g)\cG(h)\ = ë(h-{)\cG(h)\.
g~h~]

Proof of Lemma 2. Suppose on the contrary that ë(g) = 0 for all p-

elements g # 1. Let P be a Sylow /»-subgroup of G and let Xp be the restriction

of x to P. Then Xp(g) = 0 for all 1 # g G P by Lemma 3. Therefore,

(xO)/rU))fo) = Xj.(*)    for all gGP,

where f is the character of the regular representation of P. Since the 1-

representation occurs once and only once as a component of the regular

representation, it follows that x0)/£0) is an integer. Thus x(0 is a multiple

of \P\. But x(l) = \G\r/s, sop cannot divide s and the lemma is proved.

4. Proof of Theorem 2. We may assume (as in [6]) that R is a Noetherian

ring without nilpotent elements and therefore is contained in a direct sum of

fields; R Q F, © • • • 0 Fk® • ■ • © Fr where F¡ are of characteristic zero for

1 < i < k and Fk+¡ are of finite characteristic. Let II, : RG -* F¡G be the map

induced from the natural projection R -* F¡. We claim that e(\) is of the form

e(l) = (r/s, r/s, .. .,r/s,al,a2,...)

where the first k components are equal to the rational number r/s. This is true

for finite G (see [6]). For polycyclic by finite groups it follows by induction on

the Hirsch number in view of Lemma 1. Also, by ZalesskiFs Theorem, a/s

belong to finite fields.

We may suppose by considering 1 — e if necessary that r/s =£ 0. Since r and

s can be taken to be relatively prime, there exist integers a and b such that

ar + bs = 1. Thus

ß = ae(l) + b\R = (\/s,..., \/s,aa{ + b,aa2 + b,... ) e R.

We may suppose that aa¡ + b ¥= 0 for any i, as otherwise a suitable power of

sß is a nontrivial idempotent in R. Now,

sß - 1 = (0,0,... ,0,s(aal + b) - \,s(aa2 + b) - 1,... ) e R.

Again, by the same argument, s(aa¡ + b) — 1 = 0 for all / and so aa¡ + b

= \/s. We have

ß = (1/5, . . . , 1/í) =  \/s    lRGR.

Since i is a | G |-number as seen by applying Theorem 1 to n, (e), it follows that

i=l. Therefore, e = (1,1,..., l,al,a2,... ). Write e' = 1 — e. Then since

n,(e') has trace 0, it follows that U¡(e') = 0 for 1 < / < k. Hence é E SG

where S = Fk+l ® • • • © Fr. Let / be the ideal of R generated by the
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coefficients of e'. Then I2 = I C S. By KrulFs theorem, there exists an

element y G / such that 7(1 - y) = 0. Thus y2 = y G R and so y = 0 or 1.

Since clearly y # 1 as / C S, we have y = 0 and hence / = 0. It follows that

e' = 0 and e = 1.
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