ON THE TRACE OF AN IDEMPOTENT IN A GROUP RING

GERALD H. CLIFF AND SUDARSHAN K. SEHGAL

Abstract

Let $K G$ be the group ring of a polycyclic by finite group G over a field K of characteristic zero. It is proved that if $e=\sum e(g) g$ is a nontrivial idempotent in $K G$ then its trace $e(1)$ is a rational number $r / s,(r, s)=1$, with the property that for every prime divisor p of s, G has an element of order p. This result is used to prove that if R is a commutative ring of characteristic zero, without nontrivial idempotents and G is a polycyclic by finite group such that no group order $\neq 1$ is invertible in R, then $R G$ has no nontrivial idempotents.

1. Let $K G$ be the group ring of a group G over a field K. By the trace of an element $\alpha=\sum_{g} \alpha(g) g$ of $K G$ is understood $\alpha(1)$, the coefficient of the identity in α. The following two statements regarding the trace of an idempotent in $K G$ are well known.

Theorem (Zalesskiì [7]). The trace of an idempotent in $K G$ lies in the prime subfield of K.

Theorem (Kaplansky, see [4]). If K is a field of characteristic zero, the trace of a nontrivial idempotent in $K G$ lies strictly between 0 and 1.

We expect that in the characteristic zero case one should be able to say more, namely the denominator of the trace of a nontrivial idempotent is a $|G|-$ number, in the sense that for every prime p dividing this denominator, G has an element of order p. This statement is proved in Theorem 1 for polycyclic by finite groups. We apply this to prove that if R is a unital commutative ring of characteristic zero without nontrivial idempotents, with the property that no group element $\neq 1$ has order invertible in R and G is polycyclic by finite, then $R G$ has no nontrivial idempotents. This is proved for supersolvable groups in [3] and [5].

2. Results.

Theorem 1. Let KG be the group ring of a polycyclic by finite group G over a field K of characteristic zero. Let $e=\Sigma_{g} e(g) g$ be a nontrivial idempotent. Write

[^0]AMS (MOS) subject classifications (1970). Primary 16A26; Secondary 20 C 05.
Key words and phrases. Group rings, idempotent, trace.
$e(1)=r / s$ with $(r, s) \doteq 1$. If a prime p divides s, then there exists $1 \neq g \in G$ of p-power order with $e(g) \neq 0$.

Theorem 2. Let $R G$ be the group ring of a polycyclic by finite group G over a commutative unital ring R of characteristic zero. Suppose that R has no nontrivial idempotents and that no group element $\neq 1$ has order invertible in R. Then $R G$ has no nontrivial idempotents.
3. Proof of Theorem 1. Denoting conjugate elements g and h of G by $g \sim h$, write for $\alpha=\sum_{g} \alpha(g) g \in K G, \tilde{\alpha}(g)=\sum_{h \sim g} \alpha(h)$, the sum of coefficients of all conjugates of g in α. The following result is well known.

Lemma 1 (Formanek [2]). If $e=\sum e(g) g=e^{2} \in K G$ and G is Noetherian then $\tilde{e}(g)=0$ for g of infinite order.

Now let us suppose that G / A is finite and A is polycyclic. Then the number of infinite cyclic factors in any normal series of A is invariant, called the Hirsch number of G. We shall prove Theorem 1 by induction on the Hirsch number of G. We shall prove that if p is a prime divisor of s then there is an element $g \in G$ of p-power order with $\tilde{e}(g) \neq 0, g \neq 1$.

Suppose that the Hirsch number of G is $\geqslant 1$; then it is easy to see by induction on the solvability length of A that G has a torsion-free normal subgroup $N \neq\{1\}$ and therefore G / N has smaller Hirsch number. Let \bar{e} be the image of e under the natural map $K G \rightarrow K(G / N)$. Then due to Lemma 1, $\bar{e}(1)=e(1)=r / s$. Therefore, by induction, there is a $\bar{g} \in G / N$ of p-power order such that $0 \neq \tilde{e}(\bar{g})=\sum \tilde{e}(h)$, a sum over certain h such that \bar{h} is conjugate to \bar{g}.

Since again due to Lemma $1, \tilde{e}(h)=0$ for elements h of infinite order, we have that $\tilde{e}\left(h_{0}\right) \neq 0$ for some h_{0} of finite order. This h_{0} clearly has p-power order. Thus it remains to prove
Lemma 2. If G is finite and p is a prime divisor of s then there exists a $1 \neq g \in G$ of p-power order such that $\tilde{e}(g) \neq 0$.

We shall need
Lemma 3 (Hattori [1]). Suppose that $e=\sum e(g) g=e^{2} \in K G$ where G is finite and K has characteristic zero. Let χ be the character of G afforded by $K G e$. Then for $g \in G$ we have $\left|C_{G}(g)\right| \tilde{e}(g)=\chi\left(g^{-1}\right)$ where $C_{G}(g)$ denotes the centralizer of g in G.

Proof. For any $\alpha \in K G$ and $h \in G$, let $T_{\alpha}(h): K G \rightarrow K G$ be the K-linear map which sends y to hya. Then $T_{e}(h)$ acts on $K G e$ as left multiplication by h and annihilates $K G(1-e)$. Since $K G=K G e \oplus K G(1-e)$, choosing a suitable basis of $K G$, we see that the trace of the linear transformation $T_{e}(h)$ is equal to $\chi(h)$.

Now $T_{e}(h)=\sum_{g} e(g) T_{g}(h)$ and $T_{g}(h)$ sends x to $h x g$ for any $x \in G$. Therefore $T_{g}(h)$ permutes the elements of G, so its trace is the number of $x \in G$ with $x=h x g$. But $x=h x g$ if and only if $x^{-1} h^{-1} x=g$. So the trace
of $T_{g}(h)$ is 0 if and only if g is not conjugate to h^{-1} and is $\left|C_{G}(h)\right|$ otherwise. Hence

$$
\chi(h)=\sum_{g \sim h^{-1}} e(g)\left|C_{G}(h)\right|=\tilde{e}\left(h^{-1}\right)\left|C_{G}(h)\right|
$$

Proof of Lemma 2. Suppose on the contrary that $\tilde{e}(g)=0$ for all p elements $g \neq 1$. Let P be a Sylow p-subgroup of G and let χ_{P} be the restriction of χ to P. Then $\chi_{P}(g)=0$ for all $1 \neq g \in P$ by Lemma 3. Therefore,

$$
(\chi(1) / \zeta(1)) \zeta(g)=\chi_{P}(g) \text { for all } g \in P
$$

where ζ is the character of the regular representation of P. Since the 1representation occurs once and only once as a component of the regular representation, it follows that $\chi(1) / \zeta(1)$ is an integer. Thus $\chi(1)$ is a multiple of $|P|$. But $\chi(1)=|G| r / s$, so p cannot divide s and the lemma is proved.
4. Proof of Theorem 2. We may assume (as in [6]) that R is a Noetherian ring without nilpotent elements and therefore is contained in a direct sum of fields; $R \subseteq F_{1} \oplus \cdots \oplus F_{k} \oplus \cdots \oplus F_{r}$ where F_{i} are of characteristic zero for $1 \leqslant i \leqslant k$ and F_{k+j} are of finite characteristic. Let $\Pi_{i}: R G \rightarrow F_{i} G$ be the map induced from the natural projection $R \rightarrow F_{i}$. We claim that $e(1)$ is of the form

$$
e(1)=\left(r / s, r / s, \ldots, r / s, \alpha_{1}, \alpha_{2}, \ldots\right)
$$

where the first k components are equal to the rational number r / s. This is true for finite G (see [6]). For polycyclic by finite groups it follows by induction on the Hirsch number in view of Lemma 1. Also, by Zalesskii's Theorem, α_{i} 's belong to finite fields.

We may suppose by considering $1-e$ if necessary that $r / s \neq 0$. Since r and s can be taken to be relatively prime, there exist integers a and b such that $a r+b s=1$. Thus

$$
\beta=a e(1)+b 1_{R}=\left(1 / s, \ldots, 1 / s, a \alpha_{1}+b, a \alpha_{2}+b, \ldots\right) \in R .
$$

We may suppose that $a \alpha_{i}+b \neq 0$ for any i, as otherwise a suitable power of $s \beta$ is a nontrivial idempotent in R. Now,

$$
s \beta-1=\left(0,0, \ldots, 0, s\left(a \alpha_{1}+b\right)-1, s\left(a \alpha_{2}+b\right)-1, \ldots\right) \in R .
$$

Again, by the same argument, $s\left(a \alpha_{i}+b\right)-1=0$ for all i and so $a \alpha_{i}+b$ $=1 / s$. We have

$$
\beta=(1 / s, \ldots, 1 / s)=1 / s \cdot 1_{R} \in R .
$$

Since s is a $|G|$-number as seen by applying Theorem 1 to $\Pi_{1}(e)$, it follows that $s=1$. Therefore, $e=\left(1,1, \ldots, 1, \alpha_{1}, \alpha_{2}, \ldots\right)$. Write $e^{\prime}=1-e$. Then since $\Pi_{i}\left(e^{\prime}\right)$ has trace 0 , it follows that $\Pi_{i}\left(e^{\prime}\right)=0$ for $1 \leqslant i \leqslant k$. Hence $e^{\prime} \in S G$ where $S=F_{k+1} \oplus \cdots \oplus F_{r}$. Let I be the ideal of R generated by the
coefficients of e^{\prime}. Then $I^{2}=I \subset S$. By Krull's theorem, there exists an element $\gamma \in I$ such that $I(1-\gamma)=0$. Thus $\gamma^{2}=\gamma \in R$ and so $\gamma=0$ or 1 . Since clearly $\gamma \neq 1$ as $I \subset S$, we have $\gamma=0$ and hence $I=0$. It follows that $e^{\prime}=0$ and $e=1$.

References

1. A. Hattori, Rank element of a projective module, Nagoya J. Math. 25 (1965), 113-120. MR 31 \# 226.
2. E. Formanek, Idempotents in Noetherian group rings, Canad. J. Math. 25 (1973), 366-369. MR 47 \# 5041 .
3. M. Parmenter and S. Sehgal, Idempotent elements and ideals in group rings and the intersection theorem, Arch. Math. 24 (1972), 586-600. MR 49 \# 350.
4. D. Passman, Infinite group rings, Dekker, New York, 1971. MR 47 \#3500.
5. S. Sehgal, Certain algebraic elements in group rings, Arch. Math. 26 (1975), 139-143.
6. S. Sehgal and H. Zassenhaus, Group rings without non-trivial idempotents, Arch. Math. (to appear).
7. A. Zalesskiī, On a problem of Kaplansky, Dokl. Akad. Nauk SSSR 203 (1972), 749-751 = Soviet Math. Dokl. 13 (1972), 449-452. MR 45 \# 6947.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

[^0]: Received by the editors March 20, 1976.

