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ON THE TRACE OF AN IDEMPOTENT IN A
GROUP RING

GERALD H. CLIFF AND SUDARSHAN K. SEHGAL

ABSTRACT. Let KG be the group ring of a polycyclic by finite group G over
a field K of characteristic zero. It is proved thatif e = 3 e(g)g is a nontrivial
idempotent in KG then its trace e(1) is a rational numbser r/s, (r,s) = 1, with
the property that for every prime divisor p of s, G has an element of order p.
This result is used to prove that if R is a commutative ring of characteristic
zero, without nontrivial idempotents and G is a polycyclic by finite group
such that no group order # 1 is invertible in R, then RG has no nontrivial
idempotents.

1. Let KG be the group ring of a group G over a field K. By the trace of an
elementa = 3 a(g)g of KG is understood a(1), the coefficient of the identity
in a. The following two statements regarding the trace of an idempotent in KG
are well known.

THEOREM (ZALESSKII [7]). The trace of an idempotent in KG lies in the prime
subfield of K.

THEOREM (KAPLANSKY, SEE [4]). If K is a field of characteristic zero, the trace
of a nontrivial idempotent in KG lies strictly between 0 and 1.

We expect that in the characteristic zero case one should be able to say
more, namely the denominator of the trace of a nontrivial idempotent is a |G|-
number, in the sense that for every prime p dividing this denominator, G has
an element of order p. This statement is proved in Theorem 1 for polycyclic
by finite groups. We apply this to prove that if R is a unital commutative ring
of characteristic zero without nontrivial idempotents, with the property that no
group element # 1 has order invertible in R and G is polycyclic by finite, then

RG has no nontrivial idempotents. This is proved for supersolvable groups in
[3] and [5].

2. Results.

THEOREM 1. Let KG be the group ring of a polycyclic by finite group G over a
field K of characteristic zero. Let e = 3, g e(g)g be a nontrivial idempotent. Write
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e(1) = r/s with (r,s) = 1. If a prime p divides s, then there exists | # g € G of
p-power order with e(g) # 0.

THEOREM 2. Let RG be the group ring of a polycyclic by finite group G over a
commutative unital ring R of characteristic zero. Suppose that R has no nontrivial
idempotents and that no group element # 1 has order invertible in R. Then RG
has no nontrivial idempotents.

3. Proof of Theorem 1. Denoting conjugate elements g and h of Gby g ~ h,
write fora = 3 a(g)g € KG, a(g) = X, a(h), the sum of coefficients of
all conjugates of g in a. The following result is well known.

LemMaA 1 (FORMANEK [2]). Ife = 3 e(g)g = €* € KG and G is Noetherian
then &g) = O for g of infinite order.

Now let us suppose that G/A is finite and 4 is polycyclic. Then the number
of infinite cyclic factors in any normal series of A is invariant, called the
Hirsch number of G. We shall prove Theorem 1 by induction on the Hirsch
number of G. We shall prove that if p is a prime divisor of s then there is an
element g € G of p-power order with &(g) # 0, g # 1.

Suppose that the Hirsch number of G is > 1; then it is easy to see by
induction on the solvability length of 4 that G has a torsion-free normal
subgroup N # {1} and therefore G/N has smaller Hirsch number. Let & be the
image of e under the natural map KG — K(G/N). Then due to Lemma 1,
e(1) = e(1) = r/s. Therefore, by induction, there is a § € G/N of p-power
order such that 0 # &(g) = 3 &), a sum over certain 4 such that h is
conjugate to g.

Since again due to Lemma 1, &h) = 0 for elements A of infinite order, we
have that &h,) # O for some h, of finite order. This A, clearly has p-power
order. Thus it remains to prove

LemMA 2. If G is finite and p is a prime divisor of s then there exists a
1 # g € G of p-power order such that & g) #* 0.

We shall need

LEMMA 3 (HATTORI [1]). Suppose that e = 3, e(g)g = €* € KG where G is
finite and K has characteristic zero. Let x be the character of G afforded by KGe.
Then for g € G we have |Cg(g)lé(g) = x(g™") where C;(g) denotes the
centralizer of g in G.

ProoF. For any a € KG and h € G, let T, (h): KG — KG be the K-linear
map which sends y to hya. Then T (k) acts on KGe as left multiplication by 4
and annihilates KG(1 — e). Since KG = KGe ® KG(1 — e), choosing a suita-
ble basis of KG, we see that the trace of the linear transformation 7,(h) is equal
to x(h).

Now T (h) = 2 e(g)T(h) and T,(h) sends x to hxg for any x € G.
Therefore T(h) permutes the elements of G, so its trace is the number of
x E€G w1th x = hxg. But x = hxg if and only if x ~Ih~1x = g. So the trace
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of T,(h) is 0 if and only if g is not conjugate to h~! and is |Cg(h)| otherwise.
Hence

X = 3 dg)ICohl = &r)ICqMA)

PrROOF OF LEMMA 2. Suppose on the contrary that & g) = 0 for all p-
elements g # 1. Let P be a Sylow p-subgroup of G and let x  be the restriction
of x to P. Then xp(g) = Oforall 1 # g € P by Lemma 3. Therefore,

x(1)/E(M)s(g) = xp(g) forallg € P,

where { is the character of the regular representation of P. Since the 1-
representation occurs once and only once as a component of the regular
representation, it follows that x(1)/¢(1) is an integer. Thus x(1) is a multiple
of | P|. But x(1) = |G|r/s, so p cannot divide s and the lemma is proved.

4. Proof of Theorem 2. We may assume (as in [6]) that R is a Noetherian
ring without nilpotent elements and therefore is contained in a direct sum of
fields; RC K& ---® F & --- & F where F are of characteristic zero for
1 < i < kand F; are of finite characteristic. Let II;: RG — F, G be the map
induced from the natural projection R — F.. We claim that e(1) is of the form

el) = (r/s,r/s,....r/s,0y,0,,...)

where the first kK components are equal to the rational number r/s. This is true
for finite G (see [6]). For polycyclic by finite groups it follows by induction on
the Hirsch number in view of Lemma 1. Also, by Zalesskir’s Theorem, a;’s
belong to finite fields.

We may suppose by considering 1 — e if necessary that r/s # 0. Since r and
s can be taken to be relatively prime, there exist integers a and b such that
ar + bs = 1. Thus

B = ae(l) + blg = (I/s,...,1/s,aa) + b,ac, + b,...) € R.

We may suppose that aa; + b # 0 for any i, as otherwise a suitable power of
sB is a nontrivial idempotent in R. Now,

sB—1=1(0,0,...,0,s(aa; + b) — 1,s5(aa, + b) — 1,...) € R.

Again, by the same argument, s(aa; + b)) — 1 = 0 for all i and so aa; + b
= I/s. We have

B=(ls,...,1/s) = l/s- 1 € R.

Since s is a |G |-number as seen by applying Theorem 1 to I, (e), it follows that
s = 1. Therefore, e = (1,1,...,1,a;,a,...). Write &€ = 1 — e. Then since
I1,(¢’) has trace O, it follows that II,(¢’) = 0 for 1 < i < k. Hence ¢ € SG
where § = F,, ®---® E. Let I be the ideal of R generated by the
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coefficients of ¢. Then I = I C S. By Krull’s theorem, there exists an
elementy € I such that /(1 —y) = 0. Thusy> =y € Randsoy = Oor 1.
Since clearly y # 1 as I C S, we have y = 0 and hence I = 0. It follows that
¢ =0ande = 1.
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