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A TWO-CARDINAL THEOREM AND A
COMBINATORIAL THEOREM

SAHARON SHELAH1

Abstract.   We prove a new two-cardinal theorem, e.g. (N„,N0) ""* (2H°,Ro)-

For this we prove a combinatorial theorem.

This is a sequel of Shelah [SI], and solves the main problem there. This

problem also appears in Chang and Keisler [CK] and Friedman [Fr, Problem

30]. Our result is:

Theorem 1.    (A) If for every n < o>, the first order theory T has a model type

(Na+„,Na) then whenever \T\ < jit < À < Ded*Li, T has a model type (X,¡i).

(B) IfXa+01 < Ded*Na then (Ha+a,Ha) is Ha-compact and is complete.

Remark. Ded* ¡i is the first cardinal x such that no tree with < /x nodes has

> X branches of the same height. Note that Ded*N0 = (2N°)+, for every

X X+ < Ded* A < (2X)+, and it is consistent with ZFC that Ded*N, < 2*.

This leads to many conjectures whose difficulty is not known to me; a

sample is:

Conjecture 2. (A) (Na+u+u,Na+u,N„) -> (A, tt,x) whenever x < H < *

< Ded*x-
(B) // a countable theory T has a X-like model, X a limit cardinal, and

\T\ < ¡i < Ai < Ded /j,, Ai a singular cardinal then T has a Xx-like model. IfX

is Mu-Mahlo weakly inaccessible cardinal, we can remove the singularity of Xx.

(C) If ^ G Lu u has a model of cardinality Nu, then \p has a model of

cardinality 2N°.

Notation. Let / denote a well-ordered set. A (X,«)-box B is u/o h where

// has order type X; X, ¡x, x denote infinite cardinals, elements of boxes will be

denoted by rj, r, v, and 17 = <tj(0), ... ,t/(« - 1)). For a (Á,n)-box B, and

i)i E B il <C n) we say <tj0, ... ,rtn_x) is proper for B if k ¥= I < n =»i)kil)

< 1/(0- ,   x
Let X+0 = X, X+ik+x) = iX+k)+ = the successor of X+k.

A 5-indexed set is {av: r¡ E B] such that 17 # t -» an =t aT. Under those

conditions (a ,... > is proper, iff <tj0, ... > is proper. A (A, «)-indexed set is a

¿"-indexed set for some (À, «)-box B.

Lemma 3.    Suppose that fa: (X+)  -> X for each a < X. Then there exist
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s, t < X+ such that for each a < À there exist a, b, c, d for which s < a < b

<X+,t<c<d<X+ andfa(s,t) = fa(a,d) = fa(b,c).

Proof. For every u < X+ let /„ < X+ be such that whenever a < X and

/ > tu, then

\{v<X+:fa(u,t)=fa(u,v)}\ = X+.

Let Xu = {(a,ß): fa(u,t) = ß for some t > tu). Now let í < X+ be such that

whenever u > s and (a,/J) G Xu, then

|{i/<X+ :(a,/?) EI„}| =X+.

Let í = i"r It is clear that this s and t work.

Lemma 4. Lei f: A" ^> X where A is any (X+, n + l)-indexed set and k < n.

Then there is a (X,n)-indexed set A* C A such that:

(*) For any proper sequence <a0 > • • • > an-1 ) from A * there is a proper sequence

(è0> ■ • • >bn} from A such that

f(a0,...,an_x) = f(b0,...,bn_x) = f(b0,... ,bk_x,bn,bk+x,... ,bn_x).

Proof. Let A be a 5-indexed set where B = II/<n+i h anc* A = iar¡: T'

G B). For notational simplicity let k = n — 1 and each // = X+. Now we

define (sa : a < X> and (ta : a < X) by induction on a such that:

(i) ja, ta < X+.

(ii) (sa : a < X> and <f0 : a < À) are increasing.

(iii) Whenever t}0, ..., t/„_2 G B and t G X"~x are such that for each

/,/<»— 1 there is ^ < a such that tj,(/.) < X, tj,(« - 1) = ty and r/,(«)

= tß, then there are a, b, c, d such that sa < a < ¿> < X+, ta < c < d < X+

and

/(<V • • • 'S„-2'ÛT^ <w„>)  = /Ko' • • • >avn-2>aT~<a,d})

= /Ko"-"V2'a-*,c>)-

Suppose we have defined ty and ty for ß < a. For each tj0, ..., tj„_2, t

satisfying the conditions of (iii), there is a function g: (X+)   -* X defined by

g(x,y) = f(a7Xo,.. .,aVn2,aT^(xy)).

There are < X such functions g. So we can apply Lemma 3 to get sa, ta such

that sa > tß and /„ > tß for each ß < a, and for each such g there are

a, b, c, d such that sa < a < Z> < X+, ta < c < d < X+ and g(s„, /a) = g(a,

d) = g(b,c).
Now we define the (X,/i)-indexed set A*. For each t G X let bT^/a\

= a, /. , y Then let /I* = {¿V tj G X"). Now it is easy to check that (*)

holds.

Theorem 5. Let f: (X+n)' -» X whenever 0 < / < «, anrf let h: (n + 1) -» «

¿>t? it/c/i //¡a/ /)(/)</ whenever 0 < / < n. T/ten //tere are distinct a0, ..., an

< X+" si/cA /Aai
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f,(a0, ...,a,_x)= fiioQ,..., aA(/)_,, ah aA(/)+1,..., a,_, )

whenever 0 < / <¡ ai.

Proof. We let X+n be (X+",n + l)-indexed. Now we prove the theorem by

induction on n. For n = 0 there is nothing to prove. For n + 1 we use Lemma

4, and the induction hypothesis on A*.

Proof of Theorem 1. Clear from [SI, §3] and Lemma 4.

Remarks. (1) The following theorem is clear.

Theorem . If every finite subset of T has, for each n, a model of type

iXm,... ,Xq) where aJ" < X„ [(X/+1)(X'+ ]]+n < Xl+2 (/ < « - 1) and \T\ < ^

< /i] < • • • < jum < Ded*/X0 then T has a model of type (/xm,... ,/iß). (The

parallel theorem in [SI] was noted by Papageorgiou.)

(2) We can prove the main theorem of [SI] in a way similar to the proof

here.

(3) In the notation of Shelah [S2, §3], we have proved in Lemma 4 that for

m = 2", r < u, X+m -XL* (/t)A. This answers positively question 3 from [S2].

But it is still unknown whether we have the best results.

(4) Halperin and Levi [H Le] used an indiscernibility similar to the one used

in [SI], and Halperin and Lauchli proved the necessary combinatorial

theorem. We have not succeeded in generalizing their proof. However, we can

use our method to prove a weaker variant of their theorem, which is sufficient

to prove that if T E TX,\TX\ = N0, 7"is complete and there are > N0 complete

L(T)-types consistent with T, X > No then Thas > min(2x,22K°} nonisomor-

phic L(7)-reducts of models of Tx. (This will appear in [S3].)

(5) To see the connection note that by [S3] it follows by Theorem 5 that

Theorem . Letf,: (X+n)1 -* X whenever 0 </<«,/.= 2m - 1. Then there

are distinct av < X+n for tj G 2m (i.e. rj is a sequence of ones and zeros of length

m) such that: if k < m, 0 <C / < n, tx , ..., r¡ are distinct members of 2 , and for

1 < / < /, 0 < / < 1, t// G 2m and t¡ is an initial segment of tj/ then

/Kt,,,...,^)^/^,1,...,^).

(6) In Lemma 4 and Theorem 5 we can consider /x such functions, provided

that u < x, X*1 = X, resp.

(7) We can use only a (B, «)-indexed set for a fixed n in (4), but then in

Remark (3) m will become bigger.
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