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Abstract. We define a cardinal function x(p>QX where P and Q are

properties of topological spaces. We show that it is consistent and independ-

ent that x("i, first countable) = uj.

In this paper we define and investigate the cardinal function x(^, Ô), where

P and Q are properties of topological spaces. We are particularly interested in

whether x(«i, first countable) is greater than to,. We found this investigation

interesting, because it was hard to guess what x("i, first countable) should be

(see the paragraph after Example 6); important, because it answers a question

arising from the normal Moore space conjecture; and instructive, because it

provides an opportunity to use the combinatorial principle () in a topolog-

ical context.

If y is a closed subset of a space A, define the character of Y in X, x( Y, X ),

to be the least cardinal of a set %. of open sets U in X, such that for any open

set V, Y C V E X, there is U E % with Y E U E V. The motive for this

definition is that if A' is the quotient space of X obtained by shrinking Y to a

pointy, then %is a neighborhood base for y in X' and \(Y, X) is the character

of y in A'. If P and Q are properties of topological spaces, then xC^, Q) is

sup{x(y,A): Y has P, X has'ß}. This sup need not exist in general, but

x(w], first countable) is clearly less than or equal to 2"'. By abuse of notation,

we abbreviate the property of being homeomorphic to an ordinal y as y. We

also abbreviate first countable as fc.

Let us begin by presenting the application that was the author's motive for

this work. One line of attack on the normal Moore space conjecture is to

construct absolute examples of normal, not collectionwise normal spaces.

After discussing Bing's Example G, Mary Ellen Rudin writes [R], "What we

need then is a space of smaller character which is collectionwise Hausdorff as

well as normal, but still not collectionwise normal. George has these proper-

ties, but has a long way to go to become a Moore space; its character is c." In

pursuing this line of thought, it is natural to ask the vague question, "Can

George be made first countable?" George [F'] is not collectionwise normal

Received by the editors January 12, 1976 and, in revised form, April 6, 1976.

AMS (MOS) subject classifications (1970). Primary 54A25, 02K05.
Key words and phrases. Cardinal functions in topology, diamond plus, Kurepa's hypothesis.

©American Mathematical Society 1977

149



150 W. G. FLEISSNER

because there is a closed discrete collection of closed sets homeomorphic to co,

that cannot be separated, so a precise version of this question is "Is there an

absolute example of a first countable normal space X with a closed discrete

collection ty of closed sets homeomorphic to co, that cannot be separated?"

We answer this question negatively. There is a model M of set theory,

obtained by collapsing an inaccessible cardinal to co2, in which:

(1) Every normal T2 space of character < c is collection wise Hausdorff.

(2) x(wi> fc) = co, (no separation axiom assumed).

Now suppose that X and ty are as in the precise question. Let X' be the

quotient space of X obtained by shrinking each Y E ty to a point y . By (2),

the character of X' is co, ; so by (1) the points y can be separated in A". By

lifting up the collection of open sets, ty can be separated in X.

In §1 we establish notation and discuss combinatorial principles in L. §2 is

devoted to examples of x(P> £?)■ In §3 we construct, using 0 , a collection-

wise normal space demonstrating x(wj, fc) > co,. A sketch of the construction

of M and the proof of (1) and (2) is in §4. We conclude with a list of questions.

1. We consider an ordinal to be the set of smaller ordinals, equipped with

the usual topology. A function is a set of ordered pairs. The interval (a, ß] is

{y: a < y < ß). We implicitly assume that À is a limit ordinal.

By the Pressing Down Lemma, we mean the fact that if / is defined on the

limit ordinals less than to, so that f(X) < X, then there is ß such that for

cofinally many À, f(X) = ß.
One result of Jensen's investigations of L has been the abstraction of

combinatorial principles and the use of these principles in topology. The

history and proofs from V = L of these principles can be found in [D].

Topological applications of () , W, E, and KH can be found in [Ju]. In this

section we contrast these principles with Q .

The Cantor tree (or, the full binary tree on co + 1) has the property that for

n < to, the cardinality of the nth level is 2" < co, while the cardinality of the

coth level is c > to. Kurepa's Hypothesis, KH, is the assertion of the existence

of an analogue, a tree such that for y < to,, the cardinality of the yth level is

co < to,, while the cardinality of the co,th level is co2 > to,.

The principle \) is used to do 2"1 tasks in co, steps. For example, to

construct a Suslin tree we must construct a tree in co, steps while preventing

all 2"' potential uncountable antichains. However, ()■ does not suffice to

construct a Kurepa tree;'we need (> to construct co2 distinct branches

through the tree. To construct a Kurepa tree we use (} and a diagonaliza-

tion argument to insure that no family of co, branches is the family of all

branches.

Principle W asserts the existence of a Kurepa tree plus some control over all

countable subsets of branches through the tree.

2. We begin some easy examples of the function x(Y,X).

Example 1. The character of the unit interval / in the plane R2. Because /
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is compact and the distance function d is continuous, d(I,H) = ini{d(i,h): i

E I, h E H] is greater than 0 for every nonempty, closed set H disjoint from

I. Let Bn = {x: d(x,i) < \/n for some /' G /}. Then {Bn: n G co} is a basis for

I in R , so x(L R ) = a. We have, in fact, shown the well-known fact that

x(Compact, Metric) = co.

Example 2. The character of Z+, the positive integers, in the plane R . We

show that x(Z + ,R2) > to by contradiction. So assume that % = {Un: n G to}

is a basis. Let xn E Un, d(xn,n) < \, Let V = R2 — {xn: n E w}. Now, V is

open, xn E Un, and xn G V, so % is not a basis. This contradiction shows that

x(Z+,R ) > to; a fortiori, it shows x(<o, fc) > to. A similar argument shows

that if y is a countable ordinal with no last element, then x(y» fc) > co.

Example 3. If y is a countable ordinal with a last element, x(y> fc) = to.

Since y is countable, let y = [y¡: i < co}. Since we are considering only first

countable spaces, let {Bin: n G to} be a basis for y, in X. If s: n —> to, let

Vs = U{B¡si¡\: i < n}. % the set of such J-fs, is countable. Now because y is

compact, every open set containing (i.e., covering) y has a refinement in %

Example 4. The character of a Lindelöf set in a first countable space is at

most c. Let Y E X, Y Lindelöf, A first countable. Now y as a space itself is

first countable Lindelöf, so by Arhangelskiï's Theorem [R] card Y < c. Now,

analogously to Example 3, we need only consider open sets which are the

union of a countable number of basic open sets, because Y is Lindelöf. Now

because X is first countable and card Y < c, there are only co • c = c basic

open sets to consider. There are c" = (2U)° = 2U = c countable subsets of c,

so there is a basis for y in A of cardinality < c.

Example 5. The character of a countable closed, discrete set in a first

countable space. Let d be the least cardinal such that there is a family

E = {fy- y < d] dominating "co; i.e. for all g: u —> co there is y with fy(n)

> g(n) for all n. It is clear that every countable set in a first countable space

has a basis indexed by such an F, i.e. by d. The diagonalization argument of

Example 2 shows that d > co. It is known [H] that d < c is consistent.

Example 6. x(compact, fc) = c. Example 4 shows that x(compact, fc) < c;

we need a compact y in a first countable X with x(y X) = c. This example

of Alexandroff was suggested to us by Juhász. Let Y and Z be disjoint copies

of the unit interval 7*. For z E Z let {z} be open. For y G y let the nlh basic

open neighborhood of y be (y' G y: d(y,y') < 1/«} U \z' G z: 0 < d(z,z')

< I/«} where y and z correspond to the same point of /. Clearly X is first

countable, Y is compact. Because every infinite set of / has a limit point, if U

is an open set of X containing Y, then X - U is finite. Thus x(y X) = c.

Let us now consider x(^p fc). One's first impulse might be that because co,

has no last element, x(u\, fc) > to, by arguing as in Example 2. But that

argument depends on the existence of a countable sequence without a limit

point, and co, is countably compact. So maybe the analogy should rather be

with the countably compact countable ordinals, and x(wi> fc) = co,.

Example 7. x(<o,, fc) > co,. Let A = co, X co,, let Y = {<y,y>: y G co,}.
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Let U be open, fc U E X. For each y there is ß < y so that the open

rectangle (ß, y] X (ß, y] E U. By the Pressing Down Lemma, there is ßy so

that (ßv,wx) X (ßv,ux) E U.H{U¡: i E to) is a countable family of such t/'s,

choose ß > sup{¿V: i G co}. Then no U¡ is contained in the open set

*-{<j8,j8 + l>},so'x(co,,fc)>co.

3. In this section we show that x(w,, fc) > co, is consistent with the usual

axioms of set theory. Specifically, we construct Y s¿ co,, X D Y, X first

countable with x(u\, fc) > to, assuming the combinatorial principle \) .

We define a topological space Xp, depending on a set F of functions from

to, to co. The points of XF are the elements of the set co, X (co + 1), Y is the set

co, X (to}. Points of X — Y are isolated. The other points have basic open

neighborhoods of the form V(fa,ß) = {<<5,w>: a < 8 < ß,f(8) <n < to}.

The set V(f) = {<«,»>: S < to,,/(S) < n < co} is open if/ G F.

Two examples are easily understood. If F is the set of constant functions,

then A^is first countable and %[Y,X) = co. If Fis the set of all functions, then

a diagonalization arguments shows that xiT.A') > to,. But in this case X is

not first countable. Our plan is to define F between these two extremes.

We begin by establishing machinery for diagonalization arguments. Call G

a candidate if G = {ga : a < co,}, each ga is a function from co, to to, and let

G* = {V(ga): a < co,}. If x(Y>X) > to,, there is a function h: co, -* co and a

set of ordinals {-^ : a < co,} such that V(h) is open, and for all a, «(-^ )

> £„("&)• Our plan is to place many such «'s in F.

The following notation will be used in defining such /Vs. Let X < co,, K

E X, G = [ga : a < X) where each ga is a function from X to co. Define:

Enum(K)(a) = the ath element of K;

Diag(K,G)(ß) = ga(ß) +1    if ß - Enum(K)(a) for some a,

= 1 otherwise.

Thus if for some K with to, elements V(Di&g(K,G)) is open, then G* is not a

basis.

Because of the form of ()f, we need to code candidates as subsets of to,.

There is a bijection p: co, -* co, X co, X co such that for all limit ordinals X,

range p\X = XxXXu. Define G*, the subset of co, coding G, by G*

- {p-l(a,ß,n): ga(ß) = n).

The combinatorial principle 0+ is the assertion that there is a sequence

<¥ = {Wx: X < to,} such that:

(a) Wx is a countable family of subsets of X.

(b) For every S C to, there is a closed unbounded set C(S ) such that for all

X E C(S), S n X E Wx and C(S) n X G Jfx.
Now define 0(G) = Diag(C(G*), G). From Iwe can define an auxiliary

sequence %' = [W'x: X < co,} such that:

(a') W'x is a countable family of functions from X to co.

(b') For X E C(G*), D(G) I X E W'x.
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(c) For each n and X, the constant function {(a,n): a < X) E W'x.

id) If X' < X, n < u, and / G W'x then the function / U {<X',n>} U {</?,

1>:A' <ß<X) E W'x.
%' can be defined by placing in W'x the countable number of functions

required by (b') and (c) and then closing under (d). To show that a countable

set of functions can satisfy (b'), note that by (b) we can replace X E C(G*) by

G* n X G Wx, and that by our definitions, G* D X = H* n X and C(Gtt)

n X = C(//*) n X imply that £>(G) f X = DiH) I X.
We define F as the set of all functions / from co, to co such that for all

X, f I X E W'x. X is first countable by (a') and Hausdorff by (c). To show that

x(Y,X) > co, it is sufficient to show that D(G) G F for all candidates G, i.e.

that DiG) I X E W'x for all X.

If X G C(G*), then 0(G) f X Ë W'x by (b'). If X g C(GS), then either

D(G) \ X is constantly 1 or there is (because C(G^) is closed) a greatest

element X' of C(GS) n X. Then D(G) f X' E W'x by (b') and D(G) \ X

E W'x by (d) and the definition of D (which depends on the definition of

Diag).  Thus, we have shown that Q implies x("i» fc) > co,.

We remark here on an easily overlooked point. It is vitally important that

C(G^) is closed. It is not enough to know that {X: G* n X E Wx} contains a

closed unbounded set; we must know C(G^), and that C(G^) n X E Wx if

G* n X E Wx. We cannot exclude the possibility that G* n X = H% n X,

but C(G*) DX^ C(H*) n X and, hence, D(G) I X ̂  D(H) { X.

4. In this section we sketch the proof of (1) and (2). We feel that it is

unfortunate that this proof requires the reader to have some knowledge of

forcing and models of set theory. (See Question 2.) The model M is the one

Silver [S] used to show the consistency of not KH. This section is written with

the assumption that the reader has at hand a copy of Trees [J] (probably more

widely available than [S]).

The construction of M and the proof from the key lemma that x(wi> fc)

= co, is exactly the proof of not KH in M as in [J, pp. 10-11], so we only state

the key lemma and sketch its proof.

First, we code A, y as a subset of co,. Let Q be a homeomorphism from ojx

to y Let B(n,ß) be the nth basic open neighborhood of Q(ß) in X. For a

function / with domain an ordinal < co,, let

[/(/)= ö{B(f(ß),ß):ßEdomf}.

Let Ya = range Q \ a + 1. By Example 3,x(Ya,X) = co, so there is a family

H = {/if: i E co, a < co,} of functions such that {U(hf): i G to} is a base for

Ya in X. We say that H codes X, Y.

Key Lemma. // a set (P, < ) of forcing conditions is countably closed and if H

coding X, Y is in the ground model V, then in the extension, {U(f): f E V,f: co,

-* co} is a basis for Y in X.
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Proof. Suppose that in the extension, k: to, -» co and U(k) does not

contain any U(f ), / G V. Let p, be a condition. We construct by recursion

conditions ps and ordinals as, for all finite sequences s of natural numbers so

that p- forces "U(k) does not contain B(n,as)". This can be done by the

assumptions that (P, <) is countably closed and U(k) does not contain any

U(f ). Using that (P, < ) is countably closed and a diagonalization argument

as in Example 2, we can prove the contradiction that {U(hf): i E co} is not a

basis for Ya, for a greater than all the a/s.

The proof of (1) is as in [F]. Because M is L[G], where G is generic over a

countably closed notion of forcing and can be coded as a subset of co2, GCH

and diamond for stationary systems hold in M. So (1) holds in M.

5. The proofs in §§2 and 3 follow proofs about Kurepa's Hypothesis. So it

is natural to ask:

Ql. Is there an implication between KH and x("i » fc) > to, ?

The formulation of Martin's Axiom lets people who do not know about

forcing, let alone iterated forcing, do consistency results. We would like the

same for models obtained by collapsing large cardinals to co2.

Q2. Formulate and show consistent an axiom which implies not KH,

x(co,, fc) = co,, not E (co2), Kunen's generalization of Cantor's theorem on the

cardinality of first countable compact spaces [Ju], and probably other interest-

ing results. A parameter in the axiom depending on how large the large

cardinal was would be of technical interest.

The remaining questions are simply open problems concerning trees of

height to,. (We learned of Q4 and Q5 from J. Baumgartner.)

Q3. Does ()+ imply there is a Kurepa tree with no Aronszajn subtree

[JW]?

Q4. Shelah [Sh] has constructed a "special" special Aronszajn tree solving

Countryman's problem. Does every special Aronszajn tree solve Country-

man's problem?

Q5. Call two Aronszajn trees T, T almost isomorphic if there is a cub C

such that <{t G T: huj) G C}, <r> =* <{t G Tx : ht(r) G C), <r>. Does

MA + not CH imply that every two Aronszajn trees are almost isomorphic?

The referee asks whether x(ux, fc) < c is consistent, and whether MA +

-, CH has any effect on x(<*>i, fc). The author expects that x(w,, fc) < c is true

in Mitchell's model [M], and that MA H—i CH has no effect on x(w,, fc), just

as it has no effect on KH [D'].
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