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DERIVATIONS, HOMOMORPHISMS, AND

OPERATOR IDEALS

T. B. HOOVER1

Abstract. I^et 31 be a C* -algebra of operators on a Hilbert space, and let

C. be the Schatten p-ideal. It is shown that every derivation from 31 to Cp is

inner. A similar argument shows that two C*-homomorphisms which agree

modulo C. are equivalent.

It is well known [7] that every derivation on a von Neumann algebra is

inner. In addition, if 31 is a C*-algebra of operators and D is a derivation on

91, then D extends to the von Neumann algebra generated by 21 and so D is

"almost inner." Here the term derivation refers to a linear transformation D

from 31 to 91 satisfying DiAB) = ADiB) + DiA)B for each A and B in 91, and

D is inner provided there is a F in 31 satisfying DiA) — AT — TA = DTiA).

One consequence of these results says that if a *-automorphism <p of a von

Neumann algebra 91 has a derivation as a logarithm, then <p is inner in the

sense that there is a unitary operator U in 31 satisfying d>(/I) = U* AU for each

A in 91.

The derivation equation makes sense for linear maps D from the C*-algebra

91 to a two sided 91-module % Here again it can be asked if such derivations

are inner; that is, are they induced by an element of f as above? In fancier

language, the question asks if the cohomology group Hx(%,j) is trivial [2]. In

this paper we show that D is inner provided 91 is a C*-subalgebra of the

algebra L(77 ) of all operators on a separable Hilbert space 77, and % is the

Schatten p ideal C' , 1 < p < oo.

In contrast with the situation for derivations from an algebra to itself, our

theorem does not directly give information about C*-homomorphisms, but

our technique of proof applies equally well to the study of homomorphisms.

We show that if <p and \p are representations of a C*-algebra and if

<b(A) - \f/(A) is in Cp with ||<p(^) - ^A)\\ < a\\A\\ < \\A\\ for each nonzero A

in the algebra, then there is a unitary operator U with 1 — U in C and

\p(A) = U*<b(A)U. The theorem remains true, except for some finite-dimen-

sional summands, if the norm condition is omitted.
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In the last section we discuss what happens in case % is all of L(H ) or the

ideal K of compact operators.

I. Any derivation on a C*-algebra 31 can be extended to the C*-algebra

obtained by adjoining an identity to 3Í by defining D(l) = 0. Similarly a C -

homomorphism <f> on 31 can be extended by defining d>(l) = 1. Therefore we

consider only C*-algebras which contain the identity, and if the C*-algebra is

a subalgebra of L(H ), we assume that the identity is the identity operator on

77. With this in mind, we remark that every C*-algebra (with identity) is

generated by its group % of unitary elements.

In this section we deal with the von Neumann Schatten p-classes C., 1 < p

< oo. We remark here that if 1 < p <p', then Cp E Cp, and \\T\\p, < \\Tp\\

for each T in C . (||-|| denotes the norm on C „.) The reader is referred to [1]

for a discussion of these ideals. The primary tool for our first theorem is the

Ryll-Nardzewski fixed point theorem [6]. This theorem states that if Q is a

nonempty weakly compact convex subset of a locally convex Hausdorff linear

topological space, and if G is a semigroup of weakly continuous affine maps

on Q which is noncontracting, then there is a common fixed point for the maps

in G. Here noncontracting means that for a, b in Q, a ¥= b, there is a

continuous seminorm p such that inf{p(T(a) — T(b)): TE G) > 0. Applica-

tion of the Ryll-Nardzewski theorem to derivation problems is suggested in [3].

Theorem 1. 7/31 is a C*-subalgebra of 7.(77) which contains the identity

operator, and if D is a derivation from 31 to Cp, 1 < p < oo, then D is inner.

That is, there is a Tin C such that D = DTand \\T\\ is less than or equal \\D\\\ ,

the norm of D as a linear transformation from 31 to C .

Proof. The operator D is continuous as a map from 31 to L(77 ) [3] and so

it is closed as a map from 31 to C . The continuity of D follows from the closed

graph theorem.

First consider the case p > 1, so that C is a reflexive Banach space with

dual space C , l/p + l/q = 1. Let % be the unitary group of 31, K

= {U*D(U): U E %}, and Q the closed convex hull of K in Cp. The set Q is

bounded by \\D\\p and so, by the reflexivity of C , Q is weakly compact. For

each Uin% define an affine map T^ on Q by TV(C) = U*CU + U*D(U).

Then

TV(V*D(V)) = U*V*D(V)U+ U*D(U)

= U*V*(D(V)U+ VD(U)) = U*V*D(VU).

So Tv maps K to K and therefore Q onto Q. Furthermore,

TyTv(C) - U*[V*CV+ V*D(V)]U + U*D(U)

= U*V*CVU+ U*V*D(VU) = TUV(C),

so that (7¿,: U E %} is a group. Clearly, the maps Tv are weakly continuous

and if a and b are in Q,
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||^(fl) - T^b)^ = || U* (a - 6)1711, = ||a - b\\p

so that the group is noncontracting. Hence, by the Ryll-Nardzewski fixed

point theorem, there is a common fixed point F for the Tv. That is,

F = TV(T) = U*TU + U*D(U)

or D(U) = UT - TU for each U in %. But % generates 91, so D = DT, and

since Fis in Q, \\T\\   < \\D\\\ .

In case p = 1, then since C, C C. i or q > 1, there is a F in C such that

D(A) = ATq- TqA for each A in 91. Furthermore, if q' > a, WtJ^, < \\Tq\\q

< ||7)|L < }\D\\,. For each n, there is a sequence {T : m = 1,2,...) with

i«m ^ 9/1 m+i' which converges to an operator Sn in the weak* topology of

Cx+Xin. Furthermore, the sequence {T } can be chosen to be a subsequence

of {TqnJ. Note that ||Sj|1+1/„ < \\D\\X "+But all of the Sn are the same, for if F

is any finite rank operator,

tr(S„F) =   lim tr(F    F) =   lim tr(F      F) = tr(Sn+1F).

(Here "tr" stands for the trace on C,.) Call the common value F. Clearly

D = DT, T E Dq>1Cq and HF^ < ||Z)||, for o > 1. Writing T = UP in its

polar decomposition, then P is in C for each q > 1 and ||F|L < ||£>||,. It

follows that P" E C, and WP9^ = \\P\\qq < ||Z)|f. From here, it is easy to

verify that Pq converges to P in the weak* topology on C, as q decreases to 1.

Consequently P, and therefore T, is in C, and ||P||, = ||F||, < \D\.

We remark that our proof for the case p > 1 applies to any continuous

derivation of 31 into a Banach 3t-module which is a reflexive Banach space.

Proposition 3.7 of [2] also gives this result.

Corollary 2. 7/31 is a C*-subalgebra of L(H) and if D is a derivation from

31 to Cx, then t\(D(A)) = Ofor each A in 31.

Corollary 3. 7/31 is a C*-subalgebra of L(H), and if B is an operator which

commutes with 31 modulo C' , 1 < p < oo, that is, if AB — BA is in C for each

A in 91, then B = A' + C where A' commutes with 31 and C is in C .

Proof. The operator B defines a derivation DB from 31 to C . There is a C

in C satisfying DB = Dc, so A' = B — C commutes with 31.

Corollary 4. An operator B commutes with a C*-algebra 31 modulo C if and

only if it commutes with the weak closure of 31 modulo C .

II. Let 31 be any C*-algebra and <¡> a representation of 31 on some Hilbert

space 77. If U is a unitary operator on 77 for which 1 - U is in C , then the

representation \p defined by xj^A) = U*<f>(A)U for each A in 31 is such that

\p — <b is in C', that is, \p(A) — <b(A) is in C for each A in 31. Alternatively, let

<¡>x and <¡>2 be two «-dimensional representations; then <f> © ¿>, and <p © <¡>2 are
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again representations which agree modulo C . We now show that these are the

only two ways in which this can happen.

Theorem 5. Let 31 be a C*-algebra with identity and suppose ¿> and \¡i are

representations of % on H such that <f> - \p is in Cpfor some p, 1 < p < oo. Then

there is a partial ¡sometry W for which 1 - W is in C and <b(A)W = W\p(A)for

each A in 31. Furthermore, the initial space M of W reduces ^(Sf ) and the final

space N reduces <f>(2l), $\N is equivalent to $\M, and M and N have the same finite

codimension.

Proof. As with Theorem 1, we first assume that p > 1. Let K = {1

- tb(U*)\}/(U): U unitary in 31} C Cp and let Q be the closed convex hull of

K. Since C is a reflexive Banach space, Q is compact in the weak topology

on C . For C in Q and U in the unitary group <?L of 31, define 7¿,(C)

= 1 - (b(U*)(l — C)\¡/(U). Then Tv is a weakly continuous affine map of Q

to Q, TyTy = Tuv, and this action of the group % on Q is noncontracting.

Therefore the Ryll-Nardzewski fixed point theorem applies, so there is a C in

Q such that TV(C) = C for each U in %. That is,

C = 1 -<b(U*)(l - C)^(U)   or    T = <b(U*)TxL(U)

where T = 1 - C. But % generates 31, so <b(A)T = Tx^(A) for each A in 31.

Writing T — WP according to its polar decomposition, we have P2 = T* T

= 1 - C* - C + C*Cot

1 - P2 = (1 - P)(l + P) = C* + C-C*C   is in Cp

and

1 - p = (i +p)~x(c* + C- C*C)   isinCp.

Therefore

1 _ w - (1 - P) - (1 - T*)H/   is in Cp.

That If has the remaining desired properties follows by standard arguments.

The case p = 1 is proved by a weak* approximation argument using

operators Cp = 1 - Tp much as was done for Theorem 1.

In some cases, Theorem 5 gives unitary equivalence. Preserving the hypoth-

esis and the notation of that theorem, we have:

Corollary 6. If in addition 31 has no nonzero finite dimensional representa-

tions, then W is unitary.

Proof. The representations <b\N± and $\M± are finite dimensional and so

must be zero.

Corollary 7. If \\<b(U) - \p(U)\\p < a < 1 for each U in % then W is

unitary.
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Proof. From ||</>(L0 - »K^OII, = II1 - <t>iU*)¡l<iV)\\p < «, it follows that
|| 1 - F||   < a. Consequently ||1 - F|| < 1, Fis invertible and If is unitary.

HI. Derivations from a C*-algebra into F(77) and into the ideal K of

compact operators have been studied elsewhere [2], [3], [4] and we have

nothing new to add here. In this section we point out that many of the results

about these derivations carry over to homomorphisms. Kadison and Ringrose

[4] have shown that if 91 is the C*-algebra generated by an amenable group of

unitary operators, then every derivation from 31 into a dual Banach 31-module

is inner. In particular, this is true of derivations into L(77). For any group G

let 7?(<j) denote the Banach space of bounded functions on G with the

supremum norm. A (left) invariant mean on 7?(G) is a positive linear

functional </> on 7?(G) satisfying ¿>(1) = 1 and <#>(„/) = <>(/) where for/in

7J((j), g in G, f is the function defined by g/(") = figh). The group G is

amenable if such a mean exists.

The following theorem generalizes a theorem of Lambert [5] since every

abelian group is amenable.

Theorem 9. If G is an amenable group and if U and V ore unitary

representations of G on a Hilbert space 77 satisfying \\U — V\\ < a < 1 for each

g E G, then there is a unitary operator W on H such that U — W V W for each

g in G.

Proof. Let F be an operator satisfying (Fx,_y) = <i>iK* Ugx,y) Ior eacn x

and y in 77, where </> is a left invariant mean on 7?((7 ). Then

|((1 - T)x,y)\ = Ml - K*U)x,y)\ < sup || 1 - V* U'\\ \\x\\ \\y\\
gGG

= suP\\vg-ug\\\\x\\\\y\\ <«NMH|.
gee

Therefore || 1 - F|| < 1 and F is invertible. Furthermore,

(V* TUgx,y) = <i>hiVg* V* Uh Vgx,y) = *h(V* Uhx,y) = (Tx,y)

so  V* TUg = F or TUg = Vg T. Writing F = WP according to its polar

decomposition, W is unitary and satisfies the conclusions of the theorem.

Theorem 10. If a C*-algebra 31 is generated by an amenable subgroup of its

unitary group, and if<¡> and ip are representations of % on H with \\$(A) - ^A)\\

< a\\A\\ < \\A|| for each nonzero A in 91, then § andxp are equivalent.

Proof. If G is an amenable generating unitary group of 91, then U = <f>(g)

and Vg = xpig) are representations of G which are equivalent by Theorem 9.

Consequently <#> and \p are equivalent.

It is certainly not the case that every derivation from a C*-algebra into the

ideal K of compact operators is inner. Johnson and Parrott [3], however, show

that if 91 is a von Neuamnn algebra which does not contain a certain kind of

type II, factor as a direct summand, then every derivation from 91 to K is
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inner. Johnson and Parrott's arguments can be modified to study ultraweakly

continuous representations of von Neumann algebras which are equal modulo

the ideal K. These modifications parallel those made in the proof of Theorem

1 to get Theorem 5. For example, the following can be proved:

Theorem 12. If 3Í is a von Neumann algebra with no type Ux factor as a direct

summand, and if d> and \p are ultraweakly continuous representations of 21 such

that <f>(A) — \p(A) is compact for each A in 31, then there is a partial isometry W

such that 1 — W is compact and W<b(A) = \p(A)Wfor each A in 31.
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