EXTENSIONS OF TOTALLY PROJECTIVE GROUPS

RONALD LINTON AND CHARLES MEGIBBEN

ABSTRACT. It is an unpublished observation of L. Fuchs and E. A. Walker that if L is a fully invariant subgroup of the totally projective p-group G, then both L and G/L are totally projective. In this note we treat the more difficult converse question.

It is an unpublished observation of L. Fuchs and E. A. Walker that if L is a fully invariant subgroup of the totally projective p-group G, then both L and G/L are totally projective. In this note we treat the more difficult converse question.

Recall that a reduced abelian p-group G is said to be totally projective if $p^{\alpha}\text{Ext}(G/p^{\alpha}G, K) = 0$ for all abelian groups K and all ordinals α . There are numerous characterizations of totally projective groups more enlightening than the definition [1, p. 90], but the main fact that we need is the following observation: If G is totally projective, then so are $p^{\alpha}G$ and $G/p^{\alpha}G$ for all ordinals α ; and, conversely, if there is an ordinal α such that both $p^{\alpha}G$ and $G/p^{\alpha}G$ are totally projective, then G is totally projective. It is, of course, this latter statement which we shall generalize.

We shall also require at a crucial juncture another characterization of totally projectives which may be viewed as a generalization of the classical Kulikov criterion. For this we need certain definitions. If λ is a limit ordinal, we call a p-group G a C_{λ} -group provided $G/p^{\alpha}G$ is totally projective for all $\alpha < \lambda$. Thus every abelian p-group is a C_{ω} -group. Recall that the length of a reduced p-group G is just the smallest ordinal λ such that $p^{\lambda}G = 0$. We shall say that a reduced abelian p-group G is σ -summable if its socle $G[p] = \{x \in G: px = 0\}$ is the ascending union of a sequence of subgroups $\{S_n\}_{n < \omega}$ where for each n there is an ordinal α_n less than the length of G such that $S_n \cap p^{\alpha_n}G = 0$. We can now state

Theorem 1. Let λ be a limit ordinal cofinal with ω . Then a p-group G of length λ is totally projective if and only if G is a σ -summable C_{λ} -group.

PROOF. Let G be a totally projective group having limit length λ cofinal with ω . Then $G/p^{\alpha}G$ is totally projective for all α and thus G is a C_{λ} -group. Since G has limit length, it is a direct sum of groups of length strictly less than λ [1, p. 97]. As λ is cofinal with ω , we actually have such a direct decomposition of G into countably many summands $G = \bigoplus_{n < \omega} H_n$ where we may take

Received by the editors January 21, 1976.

AMS (MOS) subject classifications (1970). Primary 20K10.

Key words and phrases. Totally projective group, fully invariant subgroup, C_{λ} -groups.

 α_n = length of H_n strictly less than λ and $\alpha_n < \alpha_{n+1}$. Taking S_n to be the socle of $H_0 + \cdots + H_n$, we see that G is σ -summable.

Conversely, suppose G is a σ -summable C_{λ} -group of length λ . There are two distinct cases. First if $\lambda = \beta + \omega$ for some ordinal β , then the σ -summability of G implies that $(p^{\beta}G)[p]$ is the ascending union of subgroups of bounded height (as computed in $p^{\beta}G$) and, hence, $p^{\beta}G$ is a direct sum of cyclic groups by the classical Kulikov criterion. But then we have both $p^{\beta}G$ and $G/p^{\beta}G$ totally projective and, therefore, G is totally projective.

Finally, assume that $\lambda \neq \beta + \omega$ for all β and let the S_n 's and α_n 's be as in the definition of σ -summability. Since $\alpha_n + \omega < \lambda$ for all n, we may assume that each α_n is of the form $\beta_n + \omega$. Then by a routine argument we can enlarge each S_n so that it is maximal disjoint in G[p] from $p^{\alpha_n}G$ and still maintain the monotonicity of the sequence $\{S_n\}_{n<\omega}$. Indeed such an argument occurs in the standard proofs of the Kulikov criterion. Next we form an ascending sequence of subgroups $\{G_n\}_{n<\omega}$ where G_n is maximal in G with respect to having S_n as its socle. Then $G = \bigcup_{n<\omega} G_n$ is totally projective by [3, Proposition 2.5].

Recall that the height $h_G(x)$ of a nonzero element x in the reduced p-group G is defined to be the least ordinal α such that $x \not\in p^{\alpha+1}G$. We also set $h_G(0) = \infty$. Let $\alpha = (\alpha_i)_{i < \omega}$ be an increasing sequence of ordinals and symbols ∞ ; that is, for each i, either α_i is an ordinal or $\alpha_i = \infty$ and $\alpha_i < \alpha_{i+1}$ provided $\alpha_i \neq \infty$. With each such sequence α we associate the fully invariant subgroup $G(\alpha)$ of the p-group G defined by

$$G(\alpha) = \{ x \in G: h_G(p^i x) \ge \alpha_i \text{ for all } i < \omega \}.$$

If G is totally projective, then all of its fully invariant subgroups are of this form (see [1, Theorem 67.1 and Exercise 6, p. 101]). Thus we shall satisfy ourselves with showing that if for some sequence α both $G(\alpha)$ and $G/G(\alpha)$ are totally projective, then G itself is necessarily totally projective. We suspect that there does not exist a p-primary group G, necessarily not totally projective, that contains a fully invariant subgroup L not of the form $G(\alpha)$ such that both L and G/L are totally projective.

Our first result will turn out to be a major step towards proving the desired theorem.

THEOREM 2. Let λ be a limit ordinal cofinal with ω and let $\alpha = \{\alpha_i\}_{i < \omega}$ be an increasing sequence of ordinals bounded above by λ . If G is a C_{λ} -group and if $G(\alpha)$ is totally projective, then G is totally projective.

PROOF. Let $L = G(\alpha)$. First we wish to show that it is enough to prove the theorem in the special case where (1) $\lambda = \sup \alpha_i$, (2) λ is the length of G, and (3) L is a direct sum of cyclic groups. Let $\delta = \sup \alpha_i \leq \lambda$. It is not difficult to verify that $p^{\omega}L = p^{\delta}G$ and, hence, $p^{\delta}G$ is totally projective. Therefore we need only establish that $G/p^{\delta}G$ is totally projective. But if $\delta < \lambda$, this follows from the assumption that G is a C_{λ} -group. Hence we may assume that $\lambda = \delta = \sup \alpha_i$. Then it is easily seen that $L/p^{\omega}L = L/p^{\lambda}G = (G/p^{\lambda}G)(\alpha)$ and, of

course, $L/p^{\omega}L$ is a direct sum of cyclic groups since L is totally projective. Hence the desired reduction follows since $G/p^{\lambda}G$ is a C_{λ} -group if G is.

Since now we are assuming L to be a direct sum of cyclic groups, we have $L[p] = \bigcup_{n=1}^{\infty} T_n$ where $T_n \cap p^n L = 0$ and $T_n \subseteq T_{n+1}$ for each n. Now clearly $L[p] = (p^{\alpha_0}G)[p]$ and, hence, we have a direct decomposition $G[p] = S_0 + L[p]$ where $S_0 \cap p^{\alpha_0}G = 0$. It follows that G[p] is the monotone union of the sequence of subgroups $\{S_n\}_{n<\omega}$ where $S_n = S_0 + T_n$ for $n \ge 1$. Moreover, $S_n \cap p^{\alpha_n}G = 0$ for each n since

$$S_n \cap p^{\alpha_n}G = S_n \cap (p^{\alpha_n}G)[p] = S_n \cap (p^nL)[p] = S_n \cap p^nL = 0.$$

We conclude that G is σ -summable and, therefore, Theorem 1 is applicable. Next we turn to the very special case of our problem where $\alpha_0 = \alpha$ and $\alpha_i = \infty$ for i > 1.

LEMMA. If $L = (p^{\alpha}G)[p]$ and G/L is totally projective, then G is totally projective.

PROOF. First note that

$$p^{\alpha+1}G = p(p^{\alpha}G) \cong (p^{\alpha}G)/(p^{\alpha}G)[p] = p^{\alpha}(G/L)$$

and, hence, $p^{\alpha+1}G$ is totally projective. But this clearly implies that $p^{\alpha}G$ is totally projective, and it remains only to show that $G/p^{\alpha}G$ is also totally projective. Since $L \subseteq p^{\alpha}G$, we have $G/p^{\alpha}G \cong (G/L)/p^{\alpha}(G/L)$, and the latter group is totally projective since G/L is.

COROLLARY. If $L = G(\alpha)$ and G/L is totally projective, then G/pL is totally projective.

PROOF. Observe that $L/pL = p^{\alpha}(G/pL)[p]$ where $\alpha = \alpha_0$. Then $(G/pL)/(L/pL) \cong G/L$ is totally projective and we need only apply the lemma to G/pL.

We are now in position to prove

THEOREM 3. If α is an increasing sequence of ordinals and symbols ∞ such that both $G(\alpha)$ and $G/G(\alpha)$ are totally projective p-groups, then G itself is totally projective.

PROOF. Let $L = G(\alpha)$. If the sequence α contains any symbols ∞ , then there is a positive integer n such that $p^nL = 0$. But then repeated applications of the above corollary yield the desired conclusion that G is totally projective. Thus we may assume that $\alpha = \{\alpha_i\}_{i < \omega}$ is an increasing sequence of ordinals and take $\lambda = \sup \alpha_i$. By Theorem 2, it suffices to show that G is a C_λ -group. Hence we need only verify that $G/p^{\alpha_n}G$ is totally projective for all n. But since $p^nL \subseteq p^{\alpha_n}G$, we have

$$G/p^{\alpha_n}G \cong (G/p^nL)/p^{\alpha_n}(G/p^nL)$$

totally projective since each G/p^nL is totally projective by our Corollary above.

REFERENCES

- 1. L. Fuchs, Infinite Abelian groups, Vol. II, Academic Press, New York, 1973.
- 2. C. K. Megibben, *The generalized Kulikov criterion*, Canad. J. Math. 21 (1969), 1192-1205. MR 40 #2754.
- 3. K. D. Wallace, C_{λ} -groups and λ -basic subgroups, Pacific J. Math. 43 (1972), 799–809. MR 47 #3569.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH ALABAMA, MOBILE, ALABAMA 36688

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE 37235