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Abstract. Assosymmetric rings are ones which satisfy the law (x,y,z)

= (P(x), P(y), P(z)) for each permutation P of x, y, z. Let A be an

assosymmetric ring having characteristic different from 2 or 3. We show that

if A is solvable then A is nilpotent. Also, if each subring generated by a single

element is nilpotent, and if A has D.C.C. on right ideals, then Ais nilpotent.

We also give an example showing that the Wedderburn Principal Theorem

fails for assosymmetirc rings.

1. Introduction. A nonassociative ring is called nilpotent if there is a fixed

positive integer / such that any product involving / elements is 0. A ring is

solvable if the chain of subrings A 2 A1 2 (A ) 2 ■ • • reaches 0 in a finite

number of steps. While solvable associative rings are obviously nilpotent,

solvable alternative rings need not be [1]. An assosymmetric ring is one which

satisfies the condition (x,y,z) = (P(x), P(y), P(z)) for each permutation P of

x, y, z. These rings were introduced by Kleinfeld [2]. He showed that an

assosymmetric ring having characteristic different from 2 and 3 was either

associative or it had a nonzero ideal whose square was zero.

From here on A will denote an assosymmetric ring having characteristic

different from 2 and 3. The main purpose of this note is to show that A is

solvable if and only if A is nilpotent. We will let A* denote the ring generated

by the right and left multiplication operators Rx and Lx, x E A. Furthermore

we will say that A is right nilpotent (of index n) if for some fixed n, Rr • • • Rr

= 0 for all x¡. Similarly we may define A to be left nilpotent. It is not difficult

to show that all nilpotent rings are right nilpotent and that all right nilpotent

rings are solvable.

The following identities in A* will be useful:

(1) RyLx = LxRy - RyRx + Ryx,

(2) LyLx = Lxy - RxRy + Rxy,

(3) RxRy = Rxy - Ryx + RyRx,

(4) 0 = RyRz Rw Rx - Ryz Rw Rx - Ry R2 Rwx + Ry2 Rwx.
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Identities (1) and (2) are both equivalent to the law (a,b,c) = (c,a,b).

Identity (3) is equivalent to (a, b, c) = (a, c, b). Identity (4) is a restatement of

equation 11 in [2], which says that 0 = ((?,y,z), w,x).

2. Nilpotent rings.

Lemma 1. Every product SXSX:¡ • • • S in A* may be rewritten as a sum of

terms of the form LL ■ • LRR ■ ■ ■ R where the number of R's appearing in

each term is at least as great as the number of R's in SXSX2 ■ ■ ■ Sx .

Proof. Let F = SXi SXi--- SXt. We define d(Sx) to be 0 if S = R, and if

S = L define d(Sx.) to be the number of S's preceding it. Finally, let

d(T) = 2 d(Sx), and we will call this the degree of T. We induct on d(T). If

d(T) = 0 there is nothing to prove. Assume the lemma for each product of

degree less than m = d(T) > 0. We may assume that F begins with an R, say

T = Rr • ■ • Rr   L  Sr    • • ■ Sr .XX JC,_!    x,    xi + x xk

Using (1) this becomes

Rr ' ' ' Lr Rr   Sr    • • * Sr      Rr • • • Rr   Rr ov     ■ ■ ■ Srxx x,    x¡_x    *I+1 xk xx JC,_,     x¡    x¡+x xk

+ Rr • • • Rr   _ Sr    • • • Sr ,x\ xi-\xi    x¡+\ xk

a sum of three terms, each of degree less than m, and each having at least as

many R's as F had. By induction we are done. From Lemma 1 and a

symmetric argument we get

Lemma 2. If A is right nilpotent of index n then any product involving at least

n R's is zero. If A is left nilpotent of index m then any product involving m L's is

zero.

Lemma 3. If A is both left and right nilpotent then A is nilpotent.

Proof. Assume the index of right nilpotence is n and the index of left

nilpotence is m. To show A is nilpotent it is sufficient to show A* is nilpotent

[4]. However any product of n + m elements in A* is a sum of terms each

involving at least n R's or m L's. By Lemma 2 each term is 0.

Lemma 4. If A is right nilpotent then A is nilpotent.

Proof. By Lemma 3 we need only show that A is also left nilpotent. Let us

say the index of right nilpotence of A is n — 1, so that ((x, x2)x3) • • • xn = 0

for any n elements in A. Consider equation (2):

•*2     "*1 ■*! -*2 -*1      "*2 -*1    2

Left multiplication by Lx shows that

■*3     -*l-*2 *3     *1      x2
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Using (2) again, now on the term LXLX x ,  gives

x3     x2     -^1 \X\X2/XZ x\x2     -*3 t-*^l -^2 7-^3 x3     x\      x2 x3     *l *2 "

Repeating, we multiply this last equation by Lx> and apply (2) to the term

LxtL(x^W Continuing, we arrive at

Lx„ ' ' ' Lx2Lx,   =   L((x,x2)...)x„   + 2  T¡

where each T¡ is a term containing at least one R. Since A is right nilpotent,

L • • • Lx Lx ■■ 2 Tr This shows that any product of n2 L's is a sum of

terms each containing at least n R's. By right nilpotency and Lemma 2 each

term is zero, and so A is left nilpotent.

We remark that Lemma 4 actually holds for rings satisfying only the law

(a,b,c) = (c,a,b) since the only identities used thus far have been (1) and (2).

Consequently, right nilpotent alternative rings are nilpotent. We now prove

the main result of this section.

Theorem 5. Let A be a solvable assosymmetric ring of characteristic # 2, 3.

Then A is nilpotent.

Proof. By Lemma 4 we need only show that A is right nilpotent. Consider

the ideal B = A . Since B is solvable of lesser length than A we may assume

B is nilpotent. Then we know B* is also nilpotent [4]. Next let us denote the

subring in A* generated by [Rx.\x¡ E A) by Â. Identity (4) shows

Ry Rz Rw Rx - Ryz Rw Rx    mod ÂB*.

Equation (3) shows

RyzRwRx = R(yz)wRx ~ Rw(yz)Rx + RwRyzRx'

Using (3) again on each of the three terms on the right-hand side of the last

equation will give us R   Rw Rx E ÂB* + B*. This implies then that

RyRzRwRx E AB* + B*,   or   (Â)A Q ÂB* + B*,

so that (Â)   E ÂB*. Finally, an induction argument shows that (Â) '

Ç Â(B* )' for each i. This means, since B* is nilpotent, that Â is nilpotent, and

hence, A is right nilpotent.

Usually the concept of a nilring is reserved for power associative rings.

However we shall define A to be nil if each subring generated by a single

element is nilpotent. Taking this as our definition we get

Corollary 6. Let A be an assosymmetric nilring having characteristic # 2, 3,

and assume A has the descending chain condition on right ideals. Then A is

nilpotent.

Proof. Let J be the ideal generated by all associators (a, b, c). It is shown

in [2] that J2 = 0. Since A/J is an associative nilring with D.C.C. on right
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ideals, it is well known that A/J is solvable. The solvability of J and A/J now

guarantees that A is solvable. By Theorem 5 A is nilpotent.

3. Nilpotent rings-A second approach. In the previous section certain results

were proved primarily using the identity (a, b, c) = (c, a, b). In this section we

will generalize Theorem 5. In [2] it was shown that if A is an assosymmetric

ring having characteristic different from 2 and 3, then each associator (a, b, c)

was in the nucleus of A.

Lemma 7. Let A be a ring and S a subring. Assume Sk G N for some k > 1,

where N is the nucleus of A. Then for each m, n > 1 there exists an I > 1 such

that S' Q (Sm)n.

Proof. We induct on n. For n = 1 take / = m. Next assume S1 G (Sm)n.

Let t = max(A:, /}. We claim s2,+2m~3 is contained in (Sm)n+X. For choose

x G S2l+ m~ . Then x is a sum of terms each of the form b = axa2- • -as

where s = 2t + 2m - 3 and each a¡ G S. If m is a factor of b in this particular

association, define d(u) as the number of the a¡s in u. (For example, if

b = ax((a2a-s)a4) then d(a2a3) = 2. But in this association a3a4 is not even a

factor.) Next, choose v with d(y) > t but otherwise d(y) as small as possible.

We claim d(y) < 2/ — 2. For if d(y) > 2f - 1 then v = uv in this association

of the ii/s and d(u) + d(v) > It — 1. Thus d(u) > t or d(v) > t, contrary to

the choice of v. Since Sk G N it is clear that y £ N and the product of y with

any of the a¡s is also in N. Thus the at's can be reassociated so that b = wy, yz,

or wyz under some association. If b = wyz then

d(w) + d(z) > (2t + 1m - 3) - (2t - 2) = 2m - 1.

Therefore d(w) > m or ¿(z) > w. We conclude that b G SmS'Sr, SrS'S",

SmS', or S'S". Hence è e (Sm)"+X, and x G (Sm)"+X.

The above lemma has some interesting consequences, some of which are not

central to our purpose. However, we mention that, using Lemma 7, one can

show that the sum of two locally nilpotent ideals is locally nilpotent provided

one of them is contained in the nucleus.

We now prove the main result of this section.

Theorem 8. Let R be a ring having characteristic ¥= 2 with each associator in

the nucleus. Then if R is solvable, R is nilpotent.

Proof. In any ring R,J = (R,R,R) + (R, R,R)R is an ideal. We first show

that J Q N. Using the familiar Teichmüller identity and the fact that

(R,R,R) Q N, we get

(a,b,c)(x,y,z) = (a,b,c(x,y,z)) = -(a,b,(c,x,y)z

= -(a,b(c,x,y),z) = (a,(b,c,x)y,z) = (a(b,c,x),y,z)

= -((a,b,c)x,y,z) = -(a,b,c)(x,y,z).
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By our characteristic assumption all of the above expressions become 0. This

shows (R,R,R)R E N and soJEN. Now assume R is solvable. Then R/J is

a solvable associative ring and therefore nilpotent. Hence Rk E J E N for

some k. Also J is associative, so J" = 0. (With extra work one can actually

show J2 = 0.) We now apply Lemma 7 taking S = R and m — k. Then there

is an / for which R1 E (Rk)n E J" = 0. This shows R is nilpotent and

completes the proof.

Corollary 9. Let R be as in Theorem 8. If R is nil with D.C.C. on right ideals

then R is nilpotent.

Proof. The proof of Corollary 6 will work if it is true that J = 0. In the

proof of Theorem 8 we showed JEN and (a, b, c)(x,y, z) = 0. These facts are

enough to invoke the argument used in the main theorem of [2] in showing

J2 = 0.

4. An interesting counterexample. From the results above and in [2], one can

see that the assosymmetric identities are powerful identities. In the presence

of these theorems, one would expect the Wedderburn Principal Theorem to be

proved in short order. In [3] the idempotent lifting theorem is proved under

fairly general conditions. The problem with assosymmetric not associative

rings is that they are not power associative.

Let A be an algebra over F spanned by e, n with e = e + n, ne = n, en

= n2 = 0. Then N = [an\a in F] is the radical of A and A/N is isomorphic

to F. The ring A is assosymmetric. However, if e + an = (e + an)2 = e + n

+ an then a + 1 = a. Thus, there are no nonzero idempotents in A. The

Wedderburn Principal Theorem and the idempotent lifting theorem both fail

for A. The fact that A is only two dimensional would indicate that no

meaningful results in these directions could be expected.
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