
PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 64, Number I, May 1977

ATTAINABLE SETS OF QUASICONCAVE MARKETS
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Abstract. The union of any finite collection of corners is the attainable set

of a market with continuous, monotone increasing, quasiconcave utility

functions. It follows that the attainable sets of such markets are dense in the

collection of attainable sets of markets with utility functions restricted only

to being upper-semicontinuous and lower-bounded.

One approach to the study of an economic market is to construct a

cooperative «-person game from the market [9], [10]. Game-theoretic analysis

then yields results which can be interpreted in the context of the original

market. It is, therefore, of interest to characterize those games which can arise

from markets of various kinds. Shapley and Shubik [10] considered markets

in which utility is linearly transferable between traders. They showed that the

corresponding (side-payment) games are precisely those which are totally

balanced. Similar results are known for markets in which all traders have

concave utility functions [3], [4], [8]. The situation for more general markets is

less settled.

A natural starting point is to determine which sets of possible outcomes are

associated with markets in which all traders have well-behaved utility func-

tions. It is our purpose to investigate the character of these sets when the

utility functions are restricted to being continuous, monotone increasing, and

quasiconcave. We will find that these sets are dense in the collection of sets

associated with markets in which the traders' utility functions are much less

well behaved.

We deal with a market consisting of a set of traders N = {1,2, . . . , n), and

an m-dimensional commodity space Im = {(yx, . . . ,ym): 0 < y¡ < 1}.

(Although specification of a market usually involves the allocation of initial

holdings to the traders, for our purposes we need only treat the simpler

situation in which the commodities are collectively possessed and may be

arbitrarily distributed.) For any collection {«,}"=1 of utility functions of the

traders, the attainable set of the market is

&(ux, ...,u„)={xER":x< (ux(yx), ..., u„(y")),

where each y' G Im andlZy' = (1, . . . , 1)].
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This is the set of all utility outcomes which can be achieved by some

distribution of the available commodities among the traders. A set X in R" is

the comprehensive hull of another set Y if X = [x E R": x < y for some

y E Y}. X is compactly generated if X is the comprehensive hull of a compact

set. A corner in R " is the comprehensive hull of a single point.

It has been shown by Billera and Bixby [2] that when all of the utility

functions are continuous and concave, the corresponding attainable set is

convex and compactly generated. They also proved a converse, that every

convex, compactly generated set is the attainable set of a market with

continuous, concave utility functions which are monotone increasing. Greatly

weakening the restrictions on the utility functions we get the following result,

the proof of which is straightforward.

Theorem 1. // the utility functions ux, . . . , un are all upper-semicontinuous

and lower-bounded, then the attainable set 6B(m,, . . . ,un) is compactly gener-

ated.

The condition of lower-boundedness cannot be eliminated. Consider a

market with three traders and two commodities. Define the traders' utility

functions by

ux(a,b) -

u2(a,b) =

a if b = 0,
0 otherwise;

a if a = b,
0 otherwise;

t   h\      Í -1/ (1 - ¿>)    if* < 1,

\ 0 otherwise.

These functions are clearly upper-semicontinuous. However, for every

0 < e < 1, the outcome (1 - e,e,- 1/e) = (w,(l - e,0), u2(e,e), u3(0,l - e)) is

in every set which has &(ux,u2,u3) as its comprehensive hull.

We shall provide a partial converse to Theorem 1 by finding a collection of

attainable sets, dense in the collection of all compactly generated sets, in

which each set arises from a collection of continuous, monotone increasing,

quasiconcave utility functions. (Recall that a function u is quasiconcave if all

of its level sets {x: u(x) > a] are convex.)

Theorem 2. Let A be the union of any finite collection of corners. Then A is

the attainable set of a market in which all of the utility functions are continuous,

monotone increasing, and quasiconcave.

We prove this theorem by constructing the desired utility functions in

several stages. First, functions will be found which yield an attainable set

which is the union of A with at most one extraneous corner. These functions

will then be modified, first to make them monotone increasing and quasicon-

cave, and then to make them continuous. These modifications will not change

the original attainable set. Finally, the extraneous corner introduced in the
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first stage will be eliminated, and we will at last have a collection of utility

functions which yields the attainable set A.

Let G be the finite set of corner points which generates A. Without loss of

generality, we assume A to have been so affinely scaled that G lies in the unit

«-cube. Let 0 = x0 = xx < x2 < . . . < xp = 1 be a sequence containing all

of the values taken by any of the first (n — 1) components of points in G.

Select any 0 < b < \/(n — 1). In what follows, we work with a space of

(« - 1) commodities. A b-point is an (« — l)-vector (bk', . . . , bk"-'), where

all of the exponents are nonnegative integers. Associated with any vector c in

the unit (« — l)-cube (and, in particular, with any ¿-point) is an allocation

(y\ . . . ,y") of the (« — 1) commodities among the « traders where for each

1 < i < n - 1,

<y),= fl-c< if'=¿

0 otherwise,

and

wi(y) =

vn(y) =

y" = (c„ ...,c„_,).

Associated in turn with any collection {»,} of utility functions is

(ux(yx), . . . , un(y")), the utility outcome (attainable point) which arises from

c and is achieved by the allocation.

We now define a collection {w>(} of utility functions on /""'. For 1 < ; <

n - 1 and y G /""', let

xk    if y-t: = 1 — bk for some integer 0 < k < p,

1      if>>. = 1,

. 0      otherwise.

Writing e = (1, . . . , 1) G Z"-1, for each y G /""', let

max{z: (wx(e - y), . . .,w„_x(e - y), z) E A),

if this set is nonempty and if each y¡ G {1, b, b2, . . . , bp, 0),

.0   otherwise.

(The function wn is nonzero at only finitely many points.) We claim that the

attainable set associated with this collection of functions is the union of A

with the corner generated by the point (1, . . . , 1,0) G R". To verify this,

observe that the definition of wn forces the attainable set to be contained in

this union. The reverse containment follows from the observation that any

corner point (xk , . . . , xk , z) E G arises from the 6-point (bk', . . . , b1^-'),

and (1, . . . , 1, 0) arises from the (« - l)-vector (0, . . . , 0) which corre-

sponds to the allocation of one unit of commodity i to trader i (1 < i < n —

1), and nothing to trader n.

For each /', let v¡ be the infimum of all quasiconcave functions greater than

or equal to w¡. Since the intersection of any collection of convex (level) sets is

convex, each t>, is quasiconcave. It follows from the construction of the

functions {w,} that each v¡ is monotone increasing and upper-semicontinuous.
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Clearly, &(vx, . . . , v„) contains &(wx, . . . , wn). Assume that (yx, . . . ,y") is

an allocation such that (vx(yx), . . . , vn(y")) is not in &(wv . . . ,wn).

Without loss of generality (since, for 1 < /' < n — 1, wj and hence v¡ depend

only on (>'),)> we can then assume that (yx, . . . ,y") corresponds to the

(« — l)-vector c = (1 - (yl)x, . . . , 1 — (y"~1)„_x). Furthermore, since each

vi(y) (lor 1 < í < « — 1) is a step-function with jumps only at.y, = 1 — bk,

we can assume that c is a ¿-point. (That is, for any (yx, . . . ,y"), let the

allocation (zx, . . . , z") be defined by

(z%-0   if/*./;

\\ - bk    if 1 - bk <(y'). < 1 - ¿* + 1for0 < k <p,
(z').= V    '•

'      [l - b"    if 1 - b" <(/),,

for 1 < i < n - 1, and z* - e - 2*"1.**. Then u,(z') = v,(y') for 1 < / <

« - 1, and v„(z") > v„(y") since z" > >-".) Hence, to show that

&(vx, . . . , vn) = &(w¡, . . . , wn), it suffices to show that each ¿-point gives

rise to the same attainable point for both collections of utility functions. That

is, we wish to show that vn(y) = wn(y) for every ¿-point y. We require a

lemma of a primarily geometric nature.

Lemma. // (bk<, . . . , bk-') lies on or above the convex hull of the points

(¿A', . . . , ¿A»-'), . . . , (6'"-'', . . . , &<•-'•-'), then for some j, (kx, ...,k„_x)

Proof of lemma. If the indicated point lies on or above the convex hull of

the other (n - 1) points, then by definition there is some (f,, .. ., tn_x) > 0

with 2,f, = 1, for which

bk> > /,¿A' + • • •  + <„_,£'"-'•'

bk"-< > t^1'"-' + • • • + f..!**-1-"-1.

Let Sm = [q: I     < km). Then, noting the integrality of each k¡ and writing

'<S)-216J/„ '

bk- > t(Sm)bk--x    for all m.

Hence for each m, b > t(Sm), and adding these inequalities yields

1 >(n-\)b>2t(Sm).
m

Since S,i, = 1, it must be that some /, never appears on the right-hand side of

the inequality. For this y, the conclusion of the lemma holds.    □

Let.y be any ¿-point. Then vn(y) > wn(y) only if y lies on or above the

convex hull of a collection of ¿-points {y'}, each of which satisfies

(*) wm(y') > w„(y).

However, we can assume, by Carathéodory's Theorem, that the collection
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{y'} consists of (n - 1) points. The lemma then implies that, for some

specific i, y > y', and the monotonicity of wn contradicts (*). Therefore

vn(y) = wn(y) for all 6-points y, and this completes the proof that

&(vx, ...,vn)= &(wx, ...,wn).    □

We next modify the functions {u,}, yielding utility functions {u,} which are

continuous as well as monotone increasing and quasiconcave.

Select any 0 < e < j((« - l)"1 - b)bp-\ For each 1 < i < « and y E

I"'1, define

u,(y) = min{«: v¡(ty + (1 - t)e) < th + (1 - t)(\ + 1/e)

for all 0 < t < 1}.

This construction attaches "inclines" to the graph of each v¡ along each line

of discontinuity, in such a manner that each incline has a width (at its base)

no greater than e. (The inclines arise figuratively as the boundaries of the

shadow formed when a light, at a height of 1 + 1/e above the point

e = (I, . . . , I), shines down on the graph of v¡.) Each u¡ is monotonie.

To verify that each w, is continuous, consider an allocation y of commodi-

ties to trader i. Assume for the moment that min(l - y/) = a > 0. For any

0 < Ô < a/2, consider any z for which \zj - y/\ < 6 for all 7. Let y = 1 -

8/a. Then 0 < y < 1 and z < yy + (1 - y)e. Therefore,

u,(z) < U¡(yy + (1 - y)e) < yu,(y) + (1 - y)(l + 1/e),

and

u,{z) - Ui(y) < (8/a)(l + 1/e).

Similarly, since min(l - z/) > a/2, we have

ui(y)-ui(z)<(28/a)(\ + 1/e).

Therefore, if z is near>> (8 is small), then w,(z) is near u¡(y). We need to also

treat the case in which yj = 1 for some j. However, w, was originally defined

so that Uj(yx, . . . ,yj_x,y,yJ+x, . . . ,y„-X) is constant for all 1 - bp < y < 1

(if 1 < 1 < n — 1), or for all b < y < 1 (if / = «; this is why we took

x0 = xx = 0). Hence, the continuity of u¡ at y follows as before.

It is possible that u„ is not quasiconcave. If this is the case, let w„ be the

function defined above, and redefine un as the infimum of all quasiconcave

functions greater than or equal to ün. (This operation, applied to a continuous

function over a polyhedral domain, yields a continuous function; see [11]. It

also preserves monotonicity.)

It remains only to show that &(ux, ...,«„)= &(vx, . . . , v„). Clearly,

&(vx, . . . , v„) is contained in &(ux, . . . , u„). Consider any allocation

(y], . . . ,y"). We wish to show that (ux(yl), . . . , u„(y")) E &(vx, . . . , vn).

Let (z1, . . . , z") be the allocation defined by

(A = 0   M+j,



QUASICONCAVE MARKETS 109

(*V

{y'l       ifui(y')>vl(y>),

1 - bk    if u,(y') = v,{y') and 1 - bk < (>«'). < 1 - bk+x

for some 0 < k < p,

1 - bp    ú(y')i > 1 - bp,

for 1 </</»- 1, and z" = e - 2*~',z*. Then, for each 1 < i < n - 1,

there is an integer 0 < k¡ < p such that 1 - 6*' - e < (z'), < 1 - ¿*- and

¿*< < (z"), < ¿*' + e. Also, w,(z') = u,(.y') for 1 < / < « - 1, and un(z") >

un(y") smce z" > .v"- Hence, it will suffice to show that (ux(zx), . . . , un(z"))

E &(vx, ..., v„).

Define (z1, . . . ,z")by

(*'),- 0   if i #y;       (*'),- 1 - b\   for 1 < / < « - 1,

and z" = e - 2nk~Jxzk. We will show that m,.(z') < ©,(£') for all /. If 1 < ; <

n — 1, z' < z' and m,(z') < w,(z') = t>,(z'). Therefore, it only remains to

show that un(z") = t)n(zn). We require an extension of the previous lemma.

Lemma. If(bkl + 2e, . . . , bk--' + 2e) lies on or above the convex hull of the

points (b''\ . . . , b'l«-<), . . . , (¿'"-■•', . . . , ¿'--'■"-'), then for some i,

(kx,.. .,*„_,) < (/,,„.. .,/,,„_,).

Proof of lemma. Proceeding as in the proof of the previous lemma, we

eventually find that for everyj, bk> + 2e > t(Sj)bk>~x and, therefore,

b + 2ebx~kJ > t(Sj).

Summing,

(«- l)b + 2e^bx-k; >^t(Sj).

j j

However, the choice of e implies that

1 >(« - 1)¿ + 2e(« - \)bx~p,

and since all k, < p, this in turn implies that some index i does not appear in

any S,. Therefore, the point (bk\ . . . , bk—<) is greater than or equal to the

point (¿''', . . . , ¿''•"-') in all components.   □

We first show that m„(z") = v„(z"). If i" + 2ee is on or above the convex

hull of a collection of ¿-points, the lemma asserts that z" lies above one of the

points. Hence, vn(z" + 2ee) = u„(z"). Since w„ differs from vn only at points

within e (in every component) of a discontinuity of vn,

un(zn + ee) = v„(z" + ee) = vn(z~").

Also, since z" + ee > z" > z", the monotonicity of the functions under

consideration allows us to conclude that

vn(z") = un(-z" + ee) > ün(z") > ün(z«) > vn(¿"),

which yields the desired result.

Finally, we show that un(z") = un(z"). Assume that this is false. Then z" is
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on or above a convex combination of (n — l)-vectors ck, where for each k,

ün(ck) > ün(zn). Furthermore, it can be assumed without loss of generality

that each c* is no more than ee below a convex combination of ¿-points b^k''\

where for each /, ün(b(k'^) > ùn(z"). Therefore, z" + ee lies on or above a

convex combination of points in the collection {è(A,/)}. Since z" + 2ee > z"

+ ee > z" > z", the lemma then guarantees that z" lies above one of these

¿-points b(kM. It follows that

ün(z") > ün(z") > ün(b^'o>) > ùn(z"),

a contradiction. Therefore, un(z") = û„(z") = vn(z"). This completes the

proof that &(ux, . . . , un) = &(vx, . . . , v„).   D

Thus we have constructed a collection {w,} of utility functions which are

continuous, monotone increasing, and quasiconcave as desired. The attain-

able set of this collection is the union of A with the corner generated by

(1, . . . , 1,0). In order to eliminate this extraneous corner, we "intersect" this

market with (« — 1) others, each constructed in a similar manner but dis-

tinguishing traders 1, 2, ...,(« — 1) in turn rather than trader «. (See [2] for

details on the intersection of markets. All that need be observed here is that

the procedure of intersection involves taking the minimum of finite collec-

tions of utility functions, a process which preserves the properties of continu-

ity, monotonicity, and quasiconcavity.) This completes our proof of the

theorem.

It should be noted that, despite the rather tedious notational details of the

preceding proof, the construction is actually quite simple. It merely involves

an exponential scaling transformation of the corner points, designed to make

them extreme points of a comprehensive set with convex cross-sections

perpendicular to the «th coordinate axis. Unfortunately, this idea does not

generalize directly to sets more complicated than unions of corners, nor does

it succeed in the limit as the number of corner points is allowed to become

infinite. Hence, the question of completely characterizing those attainable sets

arising from utility functions of the type considered here remains open.

A second point to be noted concerns the "complexity" of the market

constructed to generate the desired attainable set. In general, our construction

requires the use of «(« - 1) commodities, most of which are introduced at

the very end solely to eliminate one extraneous point. An analysis of minimal

constructions, in the direction of [7], would be of interest.
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