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TWO NOTES ON METRIC GEOMETRY

RALPH ALEXANDER

Abstract. If ft, / d¡i = 1, is a signed Borel measure on the unit ball in E3,

it is shown that sup / f\p — q\dfi(p)dfi(q) = 2 with no extremal measure

existing. Also, a class of simplices which generalizes the notion of acute

triangle is studied. The results are applied to prove inequalities for

determinants of the Cayley-Menger type.

1. A counterexample. In this article /x will always denote a signed Borel

measure, concentrated on a compact set K in Euclidean space, which satisfies

jdii = 1. Let /(/x) denote the integral ff\p — q\ dfi(p) dfi(q). It was shown in

[1] and [2] that if K c E", then there is a constant bn such that sup^ /(u) <

bn (diameter of K). It was conjectured that an extremal measure un would

always exist so that /(¡u0) = sup^O). This conjecture was known to be true

in case K was a finite set or the surface of a ball.

However, we now show that an integral formula developed in [2], together

with Archimedes' beautiful theorem on zonal areas, allows us to construct a

counterexample when A' is a solid ball in E3.

Let us assume that the ball K has radius 1, and let N be a large positive

number. Place a uniform measure of total mass A^ on the surface of K, and

place a uniform negative measure of total mass 1 - N on the surface of the

concentric ball of radius 1 — N~x. The measure ¡iN is defined to be the sum

of these two uniform measures.

A key observation is that if tx and t2 are two parallel planes which both cut

the ball of radius 1 - N ~ ', then ¡xN assigns measure zero to the portion of K

between /, and t2. This follows from Archimedes' theorem.

Let T be the usual invariant measure on the planes of E3 such that the

measure of the set of planes which cut a line segment is the length of the

segment. We shall use without proof the fact that the measure of the set of

planes in E3 which cut a ball of radius R is 4R.

If t is a plane which cuts K, let At and B, be the portions of K lying in the

respective open half-spaces determined by t. In [2] it was established that

(1) I(li) = 2f!^(A,)li(Bl)dr(t).

Also, it was shown that for almost all t, ¡i(At) + n(Bt) = 1, and hence for

almost all t, ix(At) n(Bt) < j.
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Lemma 1. There is no signed Borel measure of total mass 1, concentrated on

the unit ball K, for which p(A,) = p.(Bt) = \ for almost all t.

Proof. Suppose such a measure exists. Let a plane /„ cut K so that the

volume of A, is e > 0. The set of planes t for which A, c A, has positive

T-measure, and hence p(At) = \ for at least one such /. Thus |/i|L4r ) > \.

Since this is true for any e > 0, we quickly deduce by measure continuity

from above that each point on the surface of K is an atom of | ft|-measure at

least \. This cannot be true since |/Jt|(A^) < oo by the definition of signed

measure. (See the book of Halmos [5, Chapter 6].)

The lemma together with (1) allows us to conclude that if /x0 exists then

/ ( jti0) < 2 • 4 • \ =2. The measure of the planes / which cut the ball of

radius 1 - A"1 is 4(1 - A-1) and for any such t, p.N(At)pN(Bt) = \ by

Archimedes' theorem. If t is a plane which does not cut the ball of radius

1 - A ~ ', then certainly p(A,) p(B,) > 0. Thus

7(^)>2[4(1- A-')]/4 = 2(l- A"1).

By choosing A large enough, I(¡iN) > I(p0), a contradiction. We have

proved the following theorem.

Theorem 1. Let K be the unit ball in E3. Then supM/(jti) = 2, but no

extremal measure pQ exists.

We remark that the same type of theorem can be proved when K is allowed

to range over the family of sets of constant width 2 in E3. Thus if K is any

compact set of diameter not exceeding 2 and ¡i is concentrated on K, I (p.) <

2, and this is the best possible. The corresponding question for positive

measure is open. The paper of Björck [3] contains much information about

I (p.), restricted to the class of positive measures.

2. Acute simplices and Cayley-Menger determinants. If AT is a finite set in

Euclidean space, the functional I (p.) achieves an absolute maximum for a

unique, necessarily atomic, measure p0 as was shown in [1]. Also, it was

shown that

(2) I(p0) = 2R2

where R is the radius of the least sphere which circumscribes the metric space

(K, dX//2) viewed as a subset of Euclidean space. The work of I. J. Schoenberg

[6] assures us that if d is the Euclidean metric, then (K, dx?2) embeds

isometrically into Em as the vertices of a nondegenerate m-simplex if \K\ = m

+ 1. The number R is the radius of the (m - l)-sphere which contains the

points of K.

Definition 1. We call a simplex in Em with distinct verticesp0,px, . . . ,pm

r-acute if there exists a simplex in Er with vertices q0, qx, . . . , qm such that

\Pi - Pj\2 = h - ^,| for all /,y.
The number r is not unique, but generally the least possible value would be

chosen. The previously mentioned work of Schoenberg assures us that the
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acute simplex of the definition must be a nondegenerate /w-simplex. Our next

theorem says much more. Before stating the theorem we point out the

obvious fact that the altitude from a vertex p¡ of a simplex does not exceed

mh¡j\p¡ - Pj\, i i- j.

Theorem 2. Let S be an r-acute simplex. Then there is an absolute positive

constant cr such that the altitude from any vertex p¡ is not less than

crminj\pi - pj\,       i^j.

Lemma 2. Let p\, . . . ,p'm be the images of px, . . . ,pm under the inversion

through a sphere of radius 1 centered at p0. Then p'0, p\, . . ., p'm (p'0 = p0) are

the vertices of an r-acute simplex S' if and only ifp0, . . . ,pm are the vertices of

an r-acute simplex S.

Proof. Let q0, . . . , qm be points in Er for which \q¡ — qj\ = \p¡ - pj\2. First

suppose that neither i nor j is 0, and that q'0, q\, . . . , q'm are the respective

images of q0, . . . , qm under the inversion through the unit sphere centered at

% = q'o- We note that

\q[ - ai\ = \ai - %\[\q¡ - %\ \aj - %\}~] = \p¡ -Pj\2-

Also \q'0 - q¡\ = \q0 - <?,|_' = \p'0 - p'¡\2.

The proof in the opposite direction is symmetrical.

Proof of Theorem 2. Using the notation of Lemma 2, we see that the

altitude h from p0 in the simplex S is precisely D ~ ' where D is the diameter

of the circumsphere (in Em) of the simplex S'. This follows at once from the

fact that the inversion at/>0 sends the hyperplane spanned by px, . . . ,pm into

a sphere which contains p0, and that the point in the hyperplane nearest to p0

will be sent to a point diametrically opposite top0 on the circumsphere of S'.

Next we use known results about the functional I(¡i) to obtain an upper

bound on D, which will give a lower bound on h = D~x. The measure ¡u will

be defined by p(q'¡) = x, with 2x, = 1 so that

'O) = 2 |fll - $\*ixj " S \P¡ - PjfxtXr

We know that there is an absolute constant br such that

(3) /( n) < br{maxj?; - q¡\)     for any p.

This result is found in [1, Theorem 3.8]. Combining (3) and (2) we obtain

(4) |Z)2<6f{max,,|jP;-^|2}.

Since n\&x¡j\q'¡ — qj\ < 2 max,|c7Ó — q'¡\, we have D2 < 4brmaxi\p'0 - p¡\2.

Since \p'0 — p\\ = \p0 - Pi\~x, it follows that D~x = h > cr min¡\p0 — p¡\

where cr = (2b}^2)~x. This completes the proof. It may be true that cr

= V2 /2 will work in all dimensions.

As an application of the theorem we prove an inequality for Cayley-

Menger type determinants.
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Corollary 1. Let q0, qx, . . . , q„ be points in a Euclidean space, then there is

an absolute positive constant dn such that

(5) *dï  .. ' „)0 1

1 \li-1A
> dn[mini¥=J\qi - qj\

Proof. We consider an «-acute simplex S whose vertices pQ, . . . ,pn satisfy

1/7, - pj\2 = \q¡ - qj\. Any subsimplex of an acute simplex is certainly an

acute simplex. Also, any altitude from any vertex of a subsimplex of 5 will

satisfy « > cnnàxii^j\pi — p¡\ by Theorem 2. Thus Vol(S) is at least

(n\)-x[cnmini¥=j\Pi-Pj\T.

It is well known (see [4, Chapter 4]) that

'l     \Pi-Pf?
= 4,[voi(S)]2.

Substituting the previously mentioned lower bound for Vol(,S) completes the

proof with dn = d^(n\)~2c2".

Although the Cayley-Menger type determinant arises most frequently,

det (|<7, - qj\) is also of interest. We note that this determinant equals

where \q¡ - qj\ are the inverted distances previously discussed. Thus, if need

be, we can also bound this determinant away from zero.

In closing, we note that inequality (3) can also be easily derived from

formula (1), letting K = {q'0, . . . , q'm). We would have, using the fact that

any set of diameter D is contained in a ball of radius D,

(6) I ( p) < 2( ¿ )(diameter K )t„

where rr is the measure of the hyperplanes in Er which cut a unit ball in E''.
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