σ-LOCALLY FINITE MAPS

E. MICHAEL

ABSTRACT. A map $f: X \to Y$ is called σ -locally finite if every σ -locally finite cover $\mathscr C$ of X has a refinement $\mathscr B$ such that $f(\mathscr B)$ is σ -locally finite. The principal purpose of this paper is to provide proofs of some results on these maps which were announced by the author in a previous note.

1. Introduction. The concept of a σ -locally finite map was introduced in [4], primarily in order to characterize σ -spaces and Σ -spaces as indicated in Theorem 3.1 below. The main purpose of this note is to supply proofs of results which were only announced in [4]; the motivation for doing so at this time is that the characterization mentioned above is needed in the proof of a recent theorem of D.K. Burke and the author [2].

A map¹ $f: X \to Y$ is called σ -locally finite if every σ -locally finite cover² \mathscr{C} of X has a refinement \mathscr{B} such that $f(\mathscr{B})$ is σ -locally finite.³ Our principal results about these maps are stated below. Regarding the terminology, recall that a space is subparacompact [1] if every open cover has a σ -locally finite closed refinement, and that a space is a paracompact M-space if it is Hausdorff and admits a perfect map onto a metric space; all other unfamiliar terms are defined in §3. In contrast to [4], where all spaces were assumed regular, we assume no separation properties unless specifically indicated.

PROPOSITION 1.1. If $f: X \to Y$ is a map, then each of the following conditions implies that f is σ -locally finite.

- (a) X is Lindelöf.
- (b) f is perfect.
- (c) f is closed, every $f^{-1}(y)$ is Lindelöf, and X or Y is subparacompact.
- (d) X has an almost (mod k)-network \mathcal{Q} for which $f(\mathcal{Q})$ is σ -locally finite.

It was shown in [4, p. 6] that, in general, a closed map-even between paracompact spaces-need not be σ -locally finite.

Received by the editors November 17, 1975.

AMS (MOS) subject classifications (1970). Primary 54C10; Secondary 54E20, 54D30, 54E35. Key words and phrases. σ -locally finite maps, σ -spaces, Σ -spaces, metrizable spaces, paracompact M-spaces.

¹ Maps in this paper are continuous, but not necessarily onto.

² Covers need not be open covers.

³ Here, and elsewhere in this paper, the phrase " $f(\Re)$ is σ -locally finite" is to be interpreted in the following strict, "indexed" sense: $\Re = \bigcup_{n=1}^{\infty} \Re_n$ so that, for all n, every $y \in Y$ has a neighborhood which intersects f(B) for at most finitely many $B \in \Re_n$. (This strict interpretation is required in the proof of Proposition 2.2(a) \to (d).)

[©] American Mathematical Society 1977

160 E. MICHAEL

PROPOSITION 1.2. Suppose $f: X \to Y$ is a σ -locally finite map onto a regular space Y. Then, if X has any of the following properties, so does Y: (a) subparacompact, (b) σ -space, (c) strong Σ -space.

THEOREM 1.3. The following properties of a regular space Y are equivalent.

- (a) Y is a σ -space (resp. strong Σ -space).
- (b) Y is the image under a σ -locally finite map f of a metrizable space (resp. paracompact M-space).

Moreover, in (a) \rightarrow (b) for σ -spaces the map f can be chosen to be one-to-one, and in (a) \rightarrow (b) for strong Σ -spaces the domain of f can be chosen to be a subset of $Y \times M$ for some metrizable space M.

PROPOSITION 1.4. If $f: X \to Y$ and $g: Y \to Z$ are σ -locally finite maps, so is $g \circ f: X \to Z$.

I would like to take this opportunity to point out an inaccuracy in one of the results of [4] (not involving σ -locally finite maps) which was kindly called to my attention by I. Juhasz: For Proposition 1 of [4] to be valid, one must assume that: (1) \mathscr{C} is preserved by finite intersections; (2) for each $x \in X$, $\bigcap \{A : x \in A \in \mathscr{C}\} = \bigcap \{\overline{A} : x \in A \in \mathscr{C}\}$. Alternatively, that result is valid if only assumption (1) is made, provided "(mod k)-network" is changed to "almost (mod k)-network". (See §3 below, particularly Proposition 3.2.)

- In §2 we obtain some characterizations of σ -locally finite maps, and §3 proves some results related to Σ -spaces and (mod k)-networks which may be of independent interest. The results stated above are proved in §§4–7.
- 2. σ -locally finite maps. Before stating the main result of this section (Proposition 2.2), we need a definition and a lemma. If $\mathscr E$ is a collection of subsets of X, then $\mathscr B$ is a base-like refinement of $\mathscr E$ if every $B \in \mathscr B$ is a subset of some $A \in \mathscr E$, and every $A \in \mathscr E$ is the union of elements of $\mathscr B$.
- LEMMA 2.1. Every locally finite collection $\mathfrak A$ of subsets of a space X has a disjoint, locally finite, base-like refinement $\mathfrak D$ such that every $D \in \mathfrak D$ intersects only finitely many $A \in \mathfrak A$.

PROOF. For each finite $\mathfrak{F} \subset \mathfrak{G}$, let $D(\mathfrak{F}) = \cap \mathfrak{F} - \bigcup (\mathfrak{C} - \mathfrak{F})$. Let \mathfrak{D} be the collection of all such $D(\mathfrak{F})$. It is easily checked that \mathfrak{D} has all the required properties.

PROPOSITION 2.2. If $f: X \to Y$ is a map, then $(a) \to (b) \leftrightarrow (c) \leftrightarrow (d)$. If X is subparacompact, then all four properties are equivalent.

- (a) Every open cover $\mathfrak A$ of X has a refinement $\mathfrak B$ such that $f(\mathfrak B)$ is σ -locally finite.
- (b) Every σ -locally finite collection $\mathfrak A$ of subsets of X has a base-like refinement $\mathfrak B$ such that $f(\mathfrak B)$ is σ -locally finite.
 - (c) f is σ -locally finite.
- (d) Every locally finite cover $\mathscr Q$ of X has a refinement $\mathscr B$ such that $f(\mathscr B)$ is σ -locally finite.

PROOF. That $(b) \to (c) \to (d)$ is obvious, and so is $(c) \to (a)$ if X is subparacompact. It remains to prove $(a) \to (d) \to (b)$.

- (a) \to (d). Let $\mathscr Q$ be a locally finite cover of X. Let $\mathscr Q$ be an open cover of X such that each $U \in \mathscr Q$ intersects only finitely many $A \in \mathscr Q$. By (a), there is a refinement $\mathscr E$ of $\mathscr Q$ such that $f(\mathscr E)$ is σ -locally finite. Let $\mathscr B = \{A \cap E: A \in \mathscr Q, E \in \mathscr E\}$. Then $\mathscr B$ is a refinement of $\mathscr Q$, and it is easily checked that $f(\mathscr B)$ is σ -locally finite.
- (d) \rightarrow (b). It clearly suffices to prove (b) in case $\mathscr C$ is locally finite. By Lemma 2.1, $\mathscr C$ has a disjoint, locally finite, base-like refinement $\mathscr D$. Let $\mathscr E = \mathscr D \cup \{X \cup \mathscr D\}$. Then $\mathscr E$ is a locally finite cover of X, and hence has a refinement $\mathscr B$ such that $f(\mathscr B)$ is σ -locally finite. Since $\mathscr E$ is disjoint, $\mathscr B$ must be a base-like refinement of $\mathscr E$. Let $\mathscr B' = \{B \in \mathscr B : B \subset \cup \mathscr D\}$. Then $\mathscr B'$ is a base-like refinement of $\mathscr D$ and thus of $\mathscr C$, and $f(\mathscr B')$ is σ -locally finite.

That completes the proof.

3. Networks and spaces. A cover \mathscr{Q} of X is a network for X if, whenever $x \in U$ with U open in X, then $x \in A \subset U$ for some $A \in \mathscr{Q}$. A σ -space [8] is a space with a σ -locally finite closed network.⁴ A cover \mathscr{Q} of X is a (mod k)-network [4] for X if every $x \in X$ is in some compact $K_x \subset X$ such that, whenever $K_x \subset U$ with U open in X, then $K_x \subset A \subset U$ for some $A \in \mathscr{Q}$. A strong Σ -space [7] is a space with a σ -locally finite, closed (mod k)-network.

For some purposes (such as Lemma 5.1), it is convenient to consider a modification of (mod k)-networks, obtained by weakening $K_x \subset A \subset U$ to $x \in A \subset U$ in the above definition. We call this modification an almost (mod k)-network.⁵ It will be shown (see Proposition 3.2) that the two concepts coincide under rather mild restrictions, and that they are therefore interchangeable in the above definition of a Σ -space (see Corollary 3.3).

We begin with a lemma which is somewhat more general than necessary. If \mathscr{Q} is a collection of subsets of X, we denote $\{\overline{A}: A \in \mathscr{Q}\}$ by $\overline{\mathscr{Q}}$.

Lemma 3.1. The following properties of a filter base $\mathfrak Q$ on a space X are equivalent.

- (a) There is a compact $K \subset X$ such that, if $U \supset K$ and U is open in X, then $U \supset A$ for some $A \in \mathcal{C}$.
 - (b) Same as (a), and also requiring that $\bigcap \mathscr{Q} \subset K \subset \bigcap \overline{\mathscr{Q}}$.

PROOF. That (b) implies (a) is obvious. So let K be as in (a). Let

$$K' = (K \cup (\cap \mathfrak{C})) \cap (\cap \overline{\mathfrak{C}}).$$

We will show that K' satisfies the requirement of (b).

Since K is compact, and since every open set containing K contains $\cap \mathcal{C}$, the set $K \cup (\cap \mathcal{C})$ is also compact, and hence so is its closed subset K'.

⁴ Some authors (in particular, A. Okuyama [8]) do not assume that the network is closed (i.e. consists of closed sets). If the space is regular, it makes no difference.

⁵ I. Juhasz [3] calls this a K-net.

162 E. MICHAEL

Now suppose $K' \subset U$, with U open in X, and let us show that $A \subset U$ for some $\underline{A} \in \mathcal{C}$. Let D = K - U. Then D is compact, and $D \cap (\cap \mathcal{C}) = \emptyset$, so $D \cap \overline{A_1} = \emptyset$ for some $A_1 \in \mathcal{C}$. Let $V = X - \overline{A_1}$. Then $K \subset (U \cup V)$, and $U \cup V$ is open in X, so $A_2 \subset (U \cup V)$ for some $A_2 \in \mathcal{C}$. Pick $A \in \mathcal{C}$ with $A \subset (A_1 \cap A_2)$. Then $A \subset (U \cup V)$ and $A \cap V = \emptyset$, so $A \subset U$. That completes the proof.

PROPOSITION 3.2. Suppose \mathscr{Q} is a cover of X which is preserved by finite intersections, such that $\bigcap(\mathscr{Q}_x) = \bigcap(\overline{\mathscr{Q}}_x)$ for all $x \in X$, where \mathscr{Q}_x denotes $\{A \in \mathscr{Q} : x \in A\}$. Then \mathscr{Q} is a (mod k)-network for X if and only if \mathscr{Q} is an almost (mod k)-network for X.

PROOF. The nontrivial part of this result follows immediately from Lemma 3.1, applied to \mathcal{C}_x .

The following corollary is needed in §5 to prove Proposition 1.2.

COROLLARY 3.3. A space X is a strong Σ -space if and only if it has a σ -locally finite, closed almost (mod k)-network.

PROOF. To prove the nontrivial half, let $\mathscr C$ be a σ -locally finite, closed almost (mod k)-network for X. We may suppose that $\mathscr C$ is preserved by finite intersections, so we can apply Proposition 3.2 to conclude that $\mathscr C$ is a (mod k)-network for X. Hence X is a strong Σ -space.

4. Proof of Proposition 1.1. Let us verify assertions (a)–(d).

- (a) This is clear, since a σ -locally finite cover of a Lindelöf space is countable.
- (b) This is true because the image of a locally finite collection under a perfect map is again locally finite.
- (c) If X is subparacompact, then, since f is closed, f(X) is also subparacompact by a result of D. K. Burke [1, Theorem 3.1]. We may therefore suppose that f(X) is subparacompact.

By Proposition 2.2 (a) \to (c), we need only show that every open cover $\mathfrak A$ of X has a refinement $\mathfrak B$ such that $f(\mathfrak B)$ is σ -locally finite. Our assumptions imply that there is a σ -locally finite cover $\mathfrak S$ of f(X) such that, for all $S \in \mathfrak S$, $f^{-1}(S)$ is covered by countably many $U \in \mathfrak A$, say $\{U_n(S): n \in N\}$. Let

$$\mathfrak{B}_n = \big\{ U_n(S) \cap f^{-1}(S) \colon S \in \mathbb{S} \big\},\,$$

and let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$. Then \mathfrak{B} is a refinement of \mathfrak{A} , and $f(\mathfrak{B})$ is σ -locally finite.

(d) Let \mathscr{Q} be an almost (mod k)-network for X such that $f(\mathscr{Q})$ is σ -locally finite. We will verify that f satisfies 2.2(a). So let \mathscr{Q} be an open cover of X, and let \mathscr{Q} * be the collection of finite unions of elements of \mathscr{Q} . To show that \mathscr{Q} has a refinement \mathscr{B} such that $f(\mathscr{B})$ is σ -locally finite, it suffices to show that \mathscr{Q} * has such a refinement.

Since \mathcal{Q} is an almost (mod k)-network for X, and since \mathcal{Q} * is closed under

finite unions, \mathfrak{A}^* has a refinement \mathfrak{B} such that $\mathfrak{B} \subset \mathfrak{A}$. But then $f(\mathfrak{B})$ is σ -locally finite, and that completes the proof.

- 5. **Proof of Proposition 1.2.** We begin with two results which require no separation properties. The simple verification of Lemma 5.1 is omitted.
- LEMMA 5.1. Suppose that \mathfrak{A} is a network (resp. almost (mod k)-network) for X, that \mathfrak{B} is a base-like refinement of \mathfrak{A} , and that $f: X \to Y$ is an onto map. Then $f(\mathfrak{B})$ is a network (resp. almost (mod k)-network) for Y.

PROPOSITION 5.2. Suppose $f: X \to Y$ is a σ -locally finite map onto Y. Then, if X has any of the following properties, so does Y.

- (a) Every open cover has a σ-locally finite refinement.
- (b) There is a σ -locally finite network.
- (c) There is a σ -locally finite almost (mod k)-network.
- PROOF. (a). Let \mathcal{V} be an open cover of Y. Then $f^{-1}(\mathcal{V})$ is an open cover of X, and hence it has a refinement \mathcal{B} such that $f(\mathcal{B})$ is σ -locally finite. But then $f(\mathcal{B})$ is a σ -locally finite refinement of \mathcal{V} .
- (b) and (c). Let \mathscr{Q} be a σ -locally finite network (resp. almost (mod k)-network) for X. By Proposition 2.2(c) \to (b), \mathscr{Q} has a base-like refinement \mathscr{B} such that $f(\mathscr{B})$ is σ -locally finite. By Lemma 5.1, $f(\mathscr{B})$ must be a network (resp. almost (mod k)-network) for Y.

That completes the proof.

PROOF OF PROPOSITION 1.2. In a regular space, each of the conditions (a)—(c) in Proposition 5.2 is equivalent to the same condition strengthened to require the relevant cover to be a closed cover. Hence Proposition 1.2 follows from Proposition 5.2 and—for part (c)—Corollary 3.3.

- 6. **Proof of Theorem 1.3.** That (b) \rightarrow (a) in Theorem 1.3 follows from Proposition 1.2 and the facts that every metrizable space is a σ -space and every paracompact M-space is a strong Σ -space. It remains to prove (a) \rightarrow (b).
- (a) \rightarrow (b) for σ -spaces. (We only need Y to be T_1 .) Let $\mathscr Q$ be a σ -locally finite closed network for Y; we may suppose that $\mathscr Q$ is preserved by finite intersections. Let X be the set Y, retopologized by taking $\mathscr Q$ to be a base, and let $f: X \rightarrow Y$ be the identity map. Then f is continuous because $\mathscr Q$ is a network for Y. Hence $\mathscr Q$ is also σ -locally finite in X. Since Y is T_1 , so is X. Since each $A \in \mathscr Q$ is open and closed in X, the space X is regular. By the Nagata-Smirnov theorem, X is therefore metrizable. That f is σ -locally finite follows from Proposition 1.1(d).
- (a) \rightarrow (b) for strong Σ -spaces. (We only need Y to be Hausdorff.) Let δ be a σ -locally finite, closed (mod k)-network for Y; we may suppose that δ is preserved by finite intersections. Apply Theorem 2.6 of [5] (which is applicable by [5, Proposition 3.2(a)]) to obtain a metric space M and an $X \subset Y \times M$ such that, letting $f = \pi_1 | X$ and $g = \pi_2 | X$ (where π_1 and π_2 are the coordinate

projections), we have:

- (1) g is a perfect map.
- (2) There is a base \mathfrak{B} for M such that $fg^{-1}(\mathfrak{B}) = \mathfrak{S}$.

Now since Y is Hausdorff, so is X, and hence X is a paracompact M-space by (1). Since \mathfrak{B} is a base for M, and since g is perfect, $g^{-1}(\mathfrak{B})$ is a (mod k)-network for X, so $f: X \to Y$ is a σ -locally finite map by (2) and Proposition 1.1(d).

7. **Proof of Proposition 1.4.** Let \mathscr{C} be a σ -locally finite cover of X, and let us find a refinement \mathscr{B} of \mathscr{C} such that $g(f(\mathscr{B}))$ is σ -locally finite. First, pick a refinement \mathscr{C} of \mathscr{C} such that $f(\mathscr{C})$ is σ -locally finite. This implies that $\mathscr{C} = \bigcup_{n=1}^{\infty} \mathscr{C}_n$ so that each $f(\mathscr{C}_n)$ is locally finite and each element of $f(\mathscr{C}_n)$ is the image of only finitely many elements of \mathscr{C}_n . For every n, use Lemma 2.1 to choose a locally finite, base-like refinement \mathscr{D}_n of $f(\mathscr{C}_n)$ such that each $D \in \mathscr{D}_n$ intersects at most finitely many elements of $f(\mathscr{C}_n)$. Then each $D \in \mathscr{D}_n$ intersects f(C) for at most finitely many $C \in \mathscr{C}_n$.

By Proposition 2.2(c) \rightarrow (b), each \mathfrak{D}_n has a base-like refinement \mathfrak{E}_n such that $g(\mathfrak{E}_n)$ is σ -locally finite. Let

$$\mathfrak{B}_n = \left\{C \cap f^{-1}(E) \colon C \in \mathcal{C}_n, E \in \mathcal{E}_n\right\},\,$$

and let $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$. Then \mathfrak{B} is a refinement of \mathcal{C} and thus of \mathcal{C} . Moreover, since every $E \in \mathcal{E}_n$ intersects f(C) for at most finitely many $C \in \mathcal{C}_n$, it is easily checked that $g(f(\mathfrak{B}))$ is σ -locally finite (in the strict sense required by footnote 3). That completes the proof.

REFERENCES

- 1. D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663. MR 40 #3508.
- 2. D. K. Burke and E. Michael, On certain point-countable covers, Pacific J. Math. 64 (1976), 79-92.
 - 3. I. Juhasz, A generalization of nets and bases (to appear).
- 4. E. A. Michael, On Nagami's Σ-spaces and some related matters, Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970), Pi Mu Epsilon, Dept. of Math., Washington State Univ., Pullman, Wash., 1970, pp. 13-19. MR 42 #1067.
- 5. _____, On representing spaces as images of metrizable and related spaces, General Topology and Appl. 1 (1971), 329-343. MR 45 #2681.
- 6. K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382. MR 29 #2773.
 - 7. K. Nagami, Σ-spaces, Fund. Math. 65 (1969), 169-192. MR 41 #2612.
- 8. A. Okuyama, σ-spaces and closed mappings. I, Proc. Japan Acad. 44 (1968), 472-477. MR 37 #4791.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195