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A NOTE ON MONOTONIC ORTHO-BASES

THOMAS M   PHILLIPS

Abstract. At the 1974 Topology Conference at Charlotte, North Carolina,

Peter Nyikos introduced the concept of an ortho-base and announced that a

7"2 paracompact first-countable /8-space having an ortho-base is metrizable.

The purpose of this paper is to introduce an obvious monotonie generaliza-

tion of ortho-bases and to prove the following theorem.

Theorem. If S is a regular T0 space having a monotonie ortho-base, then

each of the following implies that S has a base of countable order:

(1) 5 is connected;

(2) S is a ßc-space;

(3) S is a first-countable monotonie ß-space.

Nyikos' theorem is a corollary to (3) and Arhangel'ski?s theorem that a

T2 paracompact space having a base of countable order is metrizable.

An ortho-base for a space A1 is a base B for the topology of X such that if

F C B, then either D F is open or D F = {x} and F is a local base at x.

Every space having an ortho-base is orthocompact1 and for T0 developable

spaces, the converse is true. However, the space of countable ordinals is an

orthocompact space which does not have an ortho-base. The concept of an

ortho-base was introduced by Nyikos in [5] where he announced [5, Theorem

3.1] that a T2 paracompact first countable /8-space2 having an ortho-base is

metrizable. The purpose of this note is to show that a regular T0 first

countable monotonie /8-space having a monotonie ortho-base (see definitions

below) has a base of countable order thereby obtaining Nyikos' theorem as a

corollary to the well-known theorem of Arhangel'skii that a T2 paracompact

space having a base of countable order is metrizable.

The primitive concepts of Wicke and Worrell are essential tools in the

investigation of spaces having bases of countable order and it is assumed that

the reader is acquainted with the terminology and techniques found in [7] and

[8]. An example of the utility of these technical results is the following lemma,

the proof of which is implicit in the works of these authors.
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'A space X is orthocompact [3] if every open cover G of A' has an open refinement H such that

the intersection of every subcollection of H is open.

2A space A" is a /?-space [4] if for each x e X, there is a sequence {&,(■*)}"_, of open

neighborhoods of x such that if x E g„(x„) for each n, then the sequence {*„}"_, has a cluster

point.
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Lemma. A regular T0 space X has a base of countable order if and only if

there is a sequence W = (Wn) having the following properties:

(1) Wn is a well-ordered open cover of X;

(2) each U E Wn contains a point of X not in any predecessor of U in Wn;

(3) if x E X,j < n, and U and V are the first elements of Wj and Wn,

respectively, that contain x, then V Ç U;

(4) if (a) w = (wn) is a sequence such that for each n, there is an x E X such

that w¡ is the first element of W¡ that contains x for i < n + 1 and (b)

P E H "_ ,M>n, then [wn\n E N) is a local base at P.

Remark. In general a sequence W having properties (l)-Q) in the preced-

ing lemma is called a primitive closurewise sequence of X while a sequence w

having property (4)(a) is called a primitive representative of W. The adjective

"closurewise" may be deleted by omitting the closure symbol in (3).

Definition [2]. A space X is said to be a monotonie ß-space if, for each

point x E X, there exists a decreasing sequence {Bn(x))^_, of bases of X at x

such that if bn E Bn(xn), bn+x C bn and H "„A ¥* 0, then the sequence

(xn}?-i nas a cluster point. The family [[B„(x)}™_x\x EX) will be called a

monotonie ß-system of X. Every essentially Tx space having a base of count-

able order is a monotonie /j-space. Thus the space X in [1, Example 2] is a

monotonie yß-space but not a ß-space.

Definition. A monotonie ortho-base for a space X is a base B for the

topology of X such that if F is a monotonie subcollection of B, then either

H F is open or D F = [x] and F is a local base at x. For T0 spaces, every

base of countable order is a monotonie ortho-base. Thus the space of

countable ordinals and the space described in [3, Example 4.2] have mono-

tonic ortho-bases but not ortho-bases.

Notation. In the following theorems, yV denotes the set of positive integers

and (S, r) denotes a regular TQ space. As in [2], the statement that S is

monotonically developable means 5 has a base of countable order. If AT is a

well-ordered collection of subsets of S1 and m is a subset of some element of K,

then K(u) denotes the first element of K which contains u.Uu = {P), then

K(u) is denoted by K(P).

Theorem. I. If S is a connected space having a monotonie ortho-base, then S

is monotonically developable.

Proof. Let B be a monotonie ortho-base for S and let W he a primitive

closurewise sequence of S such that Wn C B for each n. Let w be a primitive

representative of W and suppose P E f) *=,wn. If [wn\n E N) is not a local

base at P, then n"_,wn = D^xw„ is both open and closed which is a

contradiction. So 5 is monotonically developable by the lemma.

Remark. Note that Theorem 3.2 of [5] is a corollary to the preceding

theorem and Arhangel'skii's theorem.

Definition [6]. A space X is a /3c-space if there is a sequence G = (G„) such

that
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(1) G„ is an open cover of X;

(2) for each n, if x E A E Gn, there is a B E Gn+X such that x E B Q A;

(3) if for each », g„ E Gn and gn+x Q gn, then if B = D (g> E N) is

nonempty, it is countably compact and U open and B ç U implies that some

gkQV.
Remark. In [7] a sequence G as in the preceding definition is called a

ßc-sequence. As observed in [8] for regular spaces, the class of ßc-spaces

includes all ^-spaces, wA-spaces, M -spaces and quasi-complete spaces.

Theorem 2. // S is a ßc-space having a monotonie ortho-base, then S is

monotonically developable.

Proof. Let B be a monotonie ortho-base for S and let G be a /3c-sequence

of S. As indicated in [7], we may assume G to be a primitive sequence. Using

the techniques employed in the proofs of [9, Lemmas 2.1 and 2.4], a primitive

sequence W of S can be constructed so that (1) Wn C B for each n; (2) if

P E S and Wn(P) is not singleton, then Wn+x(P) is a proper subset of

Wn(P); and (3) W is controlled (see [7]) by G. By [7, Lemma 7.6 and Remark

7.71 it follows that W is also a primitive /8f-sequence of 5. Let w be a primitive

representative of W and suppose P E fl *=,*>„. Suppose {wn\n E N} is not a

local base at P. Then for each n, there is a point xn in wn - wn+,. As observed

in [6, Remark 5.1], {xn\n E N) has a limit point in n"_,vvn = n"_,wn.

Thus D ~=1wn is not open, which is a contradiction. So {wn\n E N) is a local

base at P and S is monotonically developable by the lemma.

Definition [8]. A space X has a primitive base if and only if there is a

sequence W = ( Wn) of well-ordered collections of open sets such that for

each x E X, if U is open and x E U, there exist n and k such that x is in n

elements of Wk and the «th such element is a subset of U.

Theorem 3. If S is a first countable monotonie ß-space having a monotonie

ortho-base, then S is monotonically developable.

Proof. We will show that 5 has a primitive base which, as observed in [2],

is equivalent to possessing a (i/)-sequence of ordered covers [2]. By [2,

Corollary 2.4], it follows that S has a base of countable order.

Let {{Bn(x)}™=x\x E S) be a monotonie ß-system of S such that

{(J Bn(x)\n E N) is a decreasing local base at x for each x E S. Let B be a

monotonie ortho-base for 5 and well-order B. Well-order the set Wx = [b E

B\b is contained in some set in Bx(x) for some x E b) and for each w E Wx,

choose a point x(w) and a set ¿>,(w) so that x(w) E w, w <Z bx(w), and

bx(w) E Bx(x(w)).

Suppose Wx, . . . , Wn have been defined so that

(I,) for each i < n, W¡ is a well-ordered subcollection of B covering S such

that if w E W¡, then a point x(w) and a set b¡(w) have been chosen so that

x(w) E w,w Ç b¡(w), and b¡(w) E B¡(x(w)); and _

(I2) if / < n - 1 and P E S such that P ^ x(Wi(P)), then Wi+X (P) ç
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Wt{P), x(Wi(P)) E Wi+x(P), and bi+x(Wi+x(P)) C b,{W,{P)).

Let M = [P E S\P =h x(W„(P))} and let V = (b E B\ some set in Wn

contains b, x(Wn(b)) E b, and there is a point x E b such that some set in

B„+X(x) contains b and is contained in bn(Wn(b))). Well-order V so that

u < v in V if and only if (1) Wn(u) < W„(v) or (2) Wn(it) = W„(v) and

u < v in 5. V is a base for S on M and W„(F) = IFn(K(P)) for each

P E M. Let Z={è£5|ôEK and b is contained in some set in Bn+X(x)

for some x E b) and well-order Wn+, = V \j Z so that the order of V is

preserved and every element of V precedes every element of Z. For each

w E Wn + X, choose a point x(w) and a set bn+l(w) so that x(w) E w, w Ç

¿n+,(w), 6„+,(w) E 5„+,(x(h0), and if w E V, then ¿>B+,(w) ç bn(Wn(w)). If

/'EM, then Wn+x(P) = F(P), hence W„(/>) = Wn(Wn+x (P)). Thus

*(W„(/>)) = x(Wn(Wn+x(P))) £Wn+x(P)

and

».♦.(^.O) c *„(»M»;+,(/■))) = ¿„ W))-
So (I,) and (I2) are satisfied when n is replaced by n + 1. Consequently there

is a sequence W = Wx, W2, . . . such that (I,) and (I2) hold for all n.

Let P E S. The proof will be complete if we show that {Wn(P)\n E N) is

a local base at P. If there exist infinitely many n such that Wn(P) is contained

in some set in Bn(P), then the conclusion follows since f U Bn(P)\n EN) is

a decreasing local base at P. So suppose there is an m E N such that if

n > m, then no set in Bn(P) contains Wn(P), hence P ^ x(W„(P)). Thus

[Wn(P)\n > m) is a monotonie subcollection of B and the sequence

[x(W„(P))}™=m has a cluster point x. If {lf„(/>)|n > m) is not a local base

at P, then Pi ™=mWn(P) is open and contains x but contains no x(Wn(P)) for

n > m, which is a contradiction. Thus the result follows.

Examples. As observed in [5], the Michael line is a first countable space

having an ortho-base but no base of countable order, so the assumption that

S is a monotonie ß-space cannot be omitted from Theorem 3. Also the space

Df (see [5]) is a ß-space having an ortho-base but no base of countable order,

hence first countability is also needed.

Question. Does Theorem 3 remain valid if the monotonie conditions are

deleted ?
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