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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
A FOURTH ORDER NONLINEAR
DIFFERENTIAL EQUATION!

W. E. TAYLOR, JR.

ABSTRACT. In this paper, the asymptotic properties of solutions of a certain
fourth order differential equation are considered. Sufficient conditions for
oscillation are also given.

Introduction. This paper is concerned with the solutions of the differential
equation

(1) (v + px)y) + px)y +f(») =0

where p(x) is a continuously differentiable function defined on [0, c0) satisfy-
ing f* p(x)dx = 0. The function f: (—o0, 00) = (—00, 00) is assumed to be
continuous and satisfy the condition f(y)/y > m > 0fory # 0. Under these
assumptions, continuable nontrivial solutions of (1) with a multiple zero are
oscillatory. (See Theorem 4.)

The motiviation for this study comes from a recent article by D. L.
Lovelady [2]. In [2], Lovelady considers a special class of nonlinear fourth
order equations and derives some oscillation criteria. We also refer to the
works of J. W. Heidel [1] and P. Waltman [3] on nonlinear third order
differential equations. Unlike the results in [1] and [3], we do not require p(x) to
remain one-signed in most of our results.

A solution y(x) of (1) is said to be continuable if it exists on some ray
[a, ), a > 0. A nontrivial solution of (1) is oscillatory if it is continuable and
has arbitrarily large zeros. By a nonoscillatory solution we mean a continuable
solution which is not oscillatory. The term “solution” for the remainder of this
work will mean a nontrivial continuable solution.

Main results. Our first result is essential to the results which follow.
LemMa 1. Let y(x) be a solution of (1). Then
F(y(x)) = y(x)[y"(x) + p)p(x)] — y'(x)y"(x)

is nonincreasing on some ray [a, ), in fact,
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FIy@l = —(»"(x))* = yx) F (1 (x)).

Since F[ y(x)] is monotone it follows that F[ y(x)] is one-signed on some ray
[¢, ). Using this fact, we will call a solution u(x) of (1), type I, if Flu(x)] > 0
on some ray [d, ). If Flu(c)] < 0 for some ¢ > 0, then u(x) is said to be zype
IL.

LEMMA 2. Suppose f(x) is a twice continuously differentiable function on [a, o)
satisfying §° f"*(x)dx < oo and [ f1(x)dx < oo. Then

( INES dx)2< IR

Proor. Expand f in a Fourier cosine series on [a,a + T), use Parseval’s
equality and the C-B-S inequality, then let T — oo.
We now examine properties of type I solutions.

THEOREM 3. Let y(x) be a type 1 solution. Then the following are true:

@) S ¥ (x)dx < o0 and f* y(x) f(¥(x))dx < oo,

(i) S YA (x)dx < oo,

(iii) f* y'2(x)dx < oo.

PrOOF. Since y(x) is type I, F[y(x)] > 0 on [a, ) for some a > 0. By
differentiating F[ y(x)] and integrating from a to x we obtain

0 < Fly] = Fx@) - [ y2@a - [* W05 (:0) .

This proves (i).

To prove (ii), note that y(x) f(»(x)) > my?(x), and apply (i).
Finally, the proof of (iii) follows immediately from (i), (i) and Lemma 2.
We now consider the type II solutions.

THEOREM 4. Let y(x) be a type 11 solution. Then y(x) is oscillatory.

PROOF. Suppose y(x) is eventually positive, then there exists x = ¢ such
that y(x) > 0 on [c, ) and F[y(c)] < 0.
Consider the function

Y
I =205+ f p)at.
By differentiating J(x) we find

J(x) = Fy(x)]/y*(x)

for x > ¢. So J(x) is decreasing on [c, o). Since f;° p(x)dx = oo, it follows
that y”(x) < 0 for large x. Since y(x) > 0 we must have y’(x) > 0 on some
ray [d,0),d > c. The fact that f" p(f)dr > o as x > oo and J(x) is
decreasing implies y”(x)/y(x) > —oo as x — co. But this implies y”(x) is
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bounded away from zero for large x, implying y(x) > —co as x — oo. This
contradiction proves the theorem.

COROLLARY. Any nontrivial solution of (1) with a multiple zero is oscillatory.

LEMMA 5. Suppose p(x) > 0 and let y(x) be a type 11 solution. Then

N[¥(x)] = y(x)y"(x) — y*(x) > —c0
as x — oo.

ProOF. Note that N[ p(x)] = F[y(x)] — p(x)y*(x) < F[¥(x)]. Since (x) is
a type II solution, F[y(x)] is negative and bounded away from zero on some
ray [a, «0) and the result follows.

As our final theorem we list some properties of type II solutions.

THEOREM 6. Let y(x) be a type 11 solution and assume p(x) > 0. Then

(i) y'(x) is unbounded, and

(ii) f° y*(x)dx = co.

ProoF. From Lemma 5, N[ y(x)] = —o0 as x — 0. Since y(x) is oscillatory
(Theorem 4) (i) follows immediately by evaluating N[ (x)] along the zeros of
Hx).

To prove (ii), integrate N[ y(x)] from ¢ to x where y’(c) = 0. Doing so, we
obtain

x / )
. Nl = y@y @ -2 [y (e
But f,* N[(r)]dt > —o0 as x = oo and, since y(x) is oscillatory, (ii) follows.
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