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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF

A FOURTH ORDER NONLINEAR

DIFFERENTIAL EQUATION'

W. E. TAYLOR, JR.

Abstract. In this paper, the asymptotic properties of solutions of a certain

fourth order differential equation are considered. Sufficient conditions for

oscillation are also given.

Introduction. This paper is concerned with the solutions of the differential

equation

(1) (/" + Áx)y)'+ Áx)/+ f(y) = 0

where p(x) is a continuously differentiable function defined on [0, oo) satisfy-

ing f00 p(x)dx = oo. The function/: (-00, 00) -» (—00, 00) is assumed to be

continuous and satisfy the condition f(y)/y > m > 0 for y # 0. Under these

assumptions, continuable non tri vial solutions of (1) with a multiple zero are

oscillatory. (See Theorem 4.)

The motiviation for this study comes from a recent article by D. L.

Lovelady [2]. In [2], Lovelady considers a special class of nonlinear fourth

order equations and derives some oscillation criteria. We also refer to the

works of J. W. Heidel [1] and P. Waltman [3] on nonlinear third order

differential equations. Unlike the results in [1] and [3], we do not require p(x) to

remain one-signed in most of our results.

A solution y(x) of (1) is said to be continuable if it exists on some ray

[a, 00), a > 0. A non trivial solution of (1) is oscillatory if it is continuable and

has arbitrarily large zeros. By a nonoscillatory solution we mean a continuable

solution which is not oscillatory. The term "solution" for the remainder of this

work will mean a nontrivial continuable solution.

Main results.  Our first result is essential to the results which follow.

Lemma 1. Let y(x) be a solution of (I). Then

F(y(x)) = y(x)[y'"(x) + p(x)y(x)] - y'(x)y"(x)

is nonincreasing on some ray [a, 00), in fact,
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{F[y(x)]}' = -(y"(x))2 - y(x)f(y(x)).

Since F[>»(x)] is monotone it follows that F[_y(x)] is one-signed on some ray

[c, oo ). Using this fact, we will call a solution u(x) of (1), type I, if F[m(jc)] > 0

on some ray [d, oo). If F[k(c)] < 0 for some c > 0, then u(x) is said to be type

II.

Lemma 2. Suppose f(x) is a twice continuously differentiable function on [a, oo)

satisfyingf™ f"2(x)dx < oo andf™ f2(x)dx < oo. Then

Proof. Expand / in a Fourier cosine series on [a, a + T], use Parseval's

equality and the C-B-S inequality, then let T -» oo.

We now examine properties of type I solutions.

Theorem 3. Let y(x) be a type I solution. Then the following are true:

(i)S°°j"2(x)dx < oo andSxy(x)f(y(x))dx < oo,

(ii)f0Oy2(x)dx < oo,

(iii)r°V2(*V*<°o.

Proof. Since y(x) is type I, F[y(x)] > 0 on [a, oo) for some a > 0. By

differentiating F[_y(x)] and integrating from a to x we obtain

0 < F[y(x)j = F[y(a))- ¡Xy"2(t)dt - Cy(t)f(y(t))dt.
Ja Ja

This proves (i).

To prove (ii), note that y(x)f(y(x)) > my2(x), and apply (i).

Finally, the proof of (iii) follows immediately from (i), (ii) and Lemma 2.

We now consider the type II solutions.

Theorem 4. Let y(x) be a type II solution. Then y(x) is oscillatory.

Proof. Suppose y(x) is eventually positive, then there exists x = c such

that.y(x) > 0 on [c, oo) and F[y(c)] < 0.

Consider the function

By differentiating J(x) we find

J'(x) = F[y(x)]/y2(x)

for x > c. So J(x) is decreasing on [c, oo). Since J"c°° p(x)dx — oo, it follows

that y"(x) < 0 for large x. Since y(x) > 0 we must have y'(x) > 0 on some

ray [d, oo), ¿/ > c. The fact that f* p(t)dt -» oo as x -» oo and /(x) is

decreasing implies j'"(-x:)/)'(-x:) ~* —°° as x -^ oo. But this implies y"(x) is
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bounded away from zero for large x, implying y(x) -* — oo as x -* oo. This

contradiction proves the theorem.

Corollary. Any nontrivial solution of (I) with a multiple zero is oscillatory.

Lemma 5. Suppose p(x) > 0 and let y(x) be a type II solution. Then

N[y(x)] = y(x)y"(x) - y'2(x) -> -oo

as x -» oo.

Proof. Note that N'[y(x)] = F[y(x)] - p(x)y2(x) < F[y(x)]. Since y(x) is

a type II solution, .F[>>(x)] is negative and bounded away from zero on some

ray [a, oo) and the result follows.

As our final theorem we list some properties of type II solutions.

Theorem 6. Let y(x) be a type II solution and assume p(x) > 0. Then

(i) y'(x) is unbounded, and

(ii)fa°V2(x)¿x=oo.

Proof. From Lemma 5, A't.y(x)] -+ — oo as x -» oo. Sincey(x) is oscillatory

(Theorem 4) (i) follows immediately by evaluating M.Kx)] along the zeros of

y(x).

To prove (ii), integrate M.K*)] from c to x where y'(c) = 0. Doing so, we

obtain

f* N[y(t)]dt = y(x)y'(x) - 2 j* y'2(t)dt.

But f* N[y(t)]dt -» -oo as x -* oo and, since^(x) is oscillatory, (ii) follows.
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