ON ANALYTICITY OF LOCAL RESOLVENTS AND EXISTENCE OF SPECTRAL SUBSPACES

CHE-KOA FONG

ABSTRACT. We present some sufficient conditions for a function from an open set in C into a Hilbert space H such that (T-z)f(z) = x $(T \in B(H))$ and $x \in H$ to be analytic. As an application we show that hyperinvariant subspaces exist for certain class of operators.

Let T be a bounded operator on a Hilbert space H. Suppose f is a vector-valued mapping from an open set U in the complex plane \mathbb{C} into H, y is a vector in H, and (T-z)f(z)=y for all z in U. We ask what additional conditions force f to be analytic. For example, a recent work of Stampfli and Wadhwa [6] showed that if T is dominant and f is bounded, then f is analytic. (Also see [5].) In this note, we present some circumstances under which f is analytic. As an application we give a sufficient condition for the existence of hyperinvariant subspaces.

For a Hilbert space H, we shall write B(H) for the set of all bounded operators on H. Let $T \in B(H)$ and F be a compact set in \mathbb{C} . We shall write $X_T(F)$ for the linear manifold consisting of those x in H such that $(T-z)f(z) \equiv x$ for some analytic vector-valued function f from $\mathbb{C}\setminus F$ into H. For convenience, we call the closure of $X_T(F)$ a spectral subspace of T. Obviously, a spectral subspace of T is always hyperinvariant for T; that is, it is invariant for every operator commuting with T. For basic properties of spectral manifolds $X_T(F)$ we refer to [1]. We shall write Sp(T) for the spectrum of T and $\Pi(T)$ for the approximate point spectrum of T. For the definition and basic properties of approximate point spectra, see Chapter 8 in [2]. For $F \subseteq \mathbb{C}$, we write F^* for $\{\bar{z}: z \in F\}$.

PROPOSITION 1. If $T \in B(H)$ and $y \in \bigcap_{z \in U} (T-z)H$ where U is an open set in C such that $U \cap \Pi(T) = \emptyset$, then $z \to (T-z)^{-1}y$ is an analytic vector-valued function.

PROOF. For convenience, write $f(z) = (T-z)^{-1}y$ ($z \in U$). (This function is uniquely defined, by the hypothesis on y.) First we show that f is bounded on compacta. If not, there exists a convergent sequence $\{z_n\}$ in U such that $z_0 = \lim_n z_n \in U$ and $\lim_n ||f(z_n)|| = \infty$. Let $x_n = ||f(z_n)||^{-1} f(z_n)$. Then

Received by the editors September 15, 1976 and, in revised form, October 8, 1976. AMS (MOS) subject classifications (1970). Primary 47A10, 47A15; Secondary 47B20.

Key words and phrases. Approximate point spectrum, spectral subspace, M-hyponormal operator.

© American Mathematical Society 1977

 $||x_n|| = 1$ and

$$||(T - z_0)x_n|| \le ||(T - z_n)x_n|| + ||(z_n - z_0)x_n||$$

= $||f(z_n)||^{-1}||y|| + |z_n - z_0| \to 0$

as $n \to \infty$. This contradicts the fact that $z_0 \notin \Pi(T)$.

Let $z_0 \in U$. Then, for $z \neq z_0$, we have

$$(+) (T-z_0)g(z) = f(z),$$

where

(**)
$$g(z) = (z - z_0)^{-1} (f(z) - f(z_0)).$$

Since $z_0 \notin \Pi(T)$, the operator $T - z_0$ is bounded below and thus has a bounded inverse when it is considered as a linear map from H onto its range $(T - z_0)H$ (which is closed). (We shall designate this inverse by $(T - z_0)^{-1}$.) From (*) we see that g is bounded on a neighborhood of z_0 and hence, by (**), f is continuous at z_0 . We have shown that f is a continuous function. By (*) again, we have

$$\lim_{z \to z_0} g(z) = \lim_{z \to z_0} (T - z_0)^{-1} f(z) = (T - z_0)^{-1} f(z_0).$$

Hence, by (**), f is differentiable at z_0 . The proof is complete.

REMARK. Since the boundary of $\operatorname{Sp}(T)$ is contained in $\Pi(T)$ and is a closed set, the open set U in the above proposition is a disjoint union of two open subsets U_1 and U_2 with $U_1 \subset \operatorname{Sp}(T)$ and $U_2 \cap \operatorname{Sp}(T) = \emptyset$. It is well known that the map $z \mapsto (T-z)^{-1}$ is analytic on U_2 . Hence our interest of the proposition is the case when $U \subset \operatorname{Sp}(T) \setminus \Pi(T)$.

COROLLARY. If $T \in B(H)$, F is a compact set in \mathbb{C} and $R \supseteq \Pi(T)$, then $X_T(F)$ is closed.

PROOF. In fact, by Proposition 1, we have

$$X_T(F) = \bigcap_{z \in \mathbf{C} \setminus F} (T - z)H$$

where each (T-z)H is closed.

PROPOSITION 2. Let $T \in B(H)$, F be a compact set in \mathbb{C} and $x \in H$. If $f: \mathbb{C} \setminus F \to H$ is a bounded vector-valued function such that $(T-z)f(z) \equiv x$ and $X_{T^*}(F^*)$ is dense in H, then f is analytic.

PROOF. Since f is bounded, it suffices to show that the map $z \mapsto (f(z), y)$ is analytic for each y in a dense subset of H. Let $y \in X_{T^*}(F^*)$. Then there is an analytic function $g: \mathbb{C} \setminus F^* \to H$ such that $(T^* - \overline{z})g(\overline{z}) = y$ for $z \notin F$. Hence, for $z \notin F$, we have

$$(f(z),y)=(f(z),(T^*-\overline{z})g(\overline{z}))=((T-z)f(z),g(\overline{z}))=(x,g(\overline{z})).$$

Clearly $z \mapsto (x, g(\overline{z}))$ is analytic. The proof is complete.

REMARK. The above results can be easily generalized to operators on Banach spaces.

As an application of Proposition 2, we have the following:

PROPOSITION 3. Let $T \in B(H)$. Suppose: (1) there is a nonzero invariant subspace K of T such that T|K is a normal operator, and (2) there is a nonzero positive operator P such that $(T-z)^*(T-z) \ge P^2$ for all $z \in \mathbb{C}$. Then T has a nontrivial spectral subspace.

PROOF. Let $y \in H$ be a vector such that $x = Py \neq 0$. By Putnam [3, Theorem 6], there exists a bounded vector-valued function $f: \mathbb{C} \to H$ such that $(T^* - z) f(z) = x$.

Let E be the resolution of identity for T|K and \mathfrak{D} be the collection of all closed discs D in \mathbb{C} such that $\operatorname{Sp}(T|K) \cap (\operatorname{interior} \operatorname{of} D) \neq \emptyset$. For $D \in \mathfrak{D}$, we have $X_T(D) \supseteq E(D)K \neq \{0\}$. Hence it suffices to show that $X_T(D)$ is not dense in H for some D in \mathfrak{D} . Suppose otherwise. Then, by Proposition 2, for each $D \in \mathfrak{D}$, f is analytic on $\mathbb{C} \setminus D^*$. Hence f is a bounded entire function with

$$\lim_{|z| \to \infty} f(z) = \lim_{|z| \to \infty} (T^* - z)^{-1} x = 0.$$

By Liouville's theorem, f = 0, contradicting $x \neq 0$ and $(T^* - z)f(z) = x$. The proof is complete.

COROLLARY. Let $T_1 \in B(H_1)$ and $T_2 \in B(H_2)$. Suppose: (1) there is a nontrivial invariant subspace K of T_1 such that $T_1 \mid K$ is a normal operator, and (2) T_2 is a nonscalar M-hyponormal operator (that is,

$$(T_2-z)(T_2-z)^* \leq M(T_2-z)^*(T_2-z)$$

for all z in \mathbb{C}). Then $T = T_1 \oplus T_2$ has a nontrivial spectral subspace.

PROOF. Let P be the positive square root of $(T_2^*T_2 - T_2T_2^*)^2$. If P = 0, then T_2 is normal and we are done. Hence we may assume that $P \neq 0$. By Radjabalipour [5, Theorem 2], there is a positive number k such that $(T-z)^*(T-z) \geqslant kP^2$ for all z in \mathbb{C} . Now the corollary follows from Proposition 3.

REMARK. We do not know in the above corollary if T_1 and T_2 separately have nontrivial hyperinvariant subspaces (provided they are nonscalar operators).

ACKNOWLEDGEMENT. The author would like to thank M. D. Choi for his help which leads to a simplified proof of Proposition 1.

REFERENCES

1. I. Colojoară and C. Foiaș, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.

- 2. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178.
- 3. C. R. Putnam, Hyponormal contractions and strong power convergence, Pacific J. Math. 57 (1975), no. 2, 531-538. MR 52 #1393.
 - 4. M. Radjabalipour, Ranges of hyponormal operators (to appear).
- 5. ____, On majorization and normality of operators, Proc. Amer. Math. Soc. 62 (1977), 105-110.
 - 6. J. G. Stampfli and B. L. Wadhwa, On dominant operators (to appear).

Department of Mathematics, University of Toronto, Toronto, Ontario ${\tt M5S\ 1A1},$ Canada