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ON ANALYTICITY OF LOCAL RESOLVENTS

AND EXISTENCE OF SPECTRAL SUBSPACES

CHE-KOA FONG

Abstract. We present some sufficient conditions for a function from an

open set in C into a Hubert space H such that (T - z)f(z) = x (T e B(H )

and x £ H ) to be analytic. As an application we show that hyperinvariant

subspaces exist for certain class of operators.

Let T be a bounded operator on a Hilbert space H. Suppose / is a vector-

valued mapping from an open set U in the complex plane C into H, y is a

vector in H, and (T — z)f(z) = y for all z in U. We ask what additional

conditions force / to be analytic. For example, a recent work of Stampfli and

Wadhwa [6] showed that if T is dominant and / is bounded, then / is analytic.

(Also see [5].) In this note, we present some circumstances under which / is

analytic. As an application we give a sufficient condition for the existence of

hyperinvariant subspaces.

For a Hilbert space H, we shall write B(H) for the set of all bounded

operators on H. Let T E B(H ) and F be a compact set in C. We shall write

XT(F) for the linear manifold consisting of those x in H such that (T — z)f(z)

= x for some analytic vector-valued function / from C\F into H. For

convenience, we call the closure of XT(F) a spectral subspace of T. Obviously,

a spectral subspace of T is always hyperinvariant for T; that is, it is invariant

for every operator commuting with T. For basic properties of spectral

manifolds XT(F) we refer to [1]. We shall write Sp(r) for the spectrum of T

and Tl(T) for the approximate point spectrum of T. For the definition and

basic properties of approximate point spectra, see Chapter 8 in [2]. For FCC,

we write F* for (z: z E F).

Proposition \. If T E B(H) and y E HzSU(T - z)H where U is an open

set in C such that ¡/ n 11(1) = 0, then z —> (T — z)~ y is an analytic vector-

valued function.

Proof. For convenience, write/(z) = (T - z) y (z E U). (This function

is uniquely defined, by the hypothesis on y.) First we show that / is bounded

on compacta. If not, there exists a convergent sequence {zn} in U such that

z0 = lim„z„ G U and  limj/(z„)|| = oo.  Let  xn = \\f(zn)fXf(zn).  Then
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Ik II = land

\\(T-z0)xj < iKr-fXH + IK*, - z0)x„\\

-«/(Oir'W + k-iol-o
as n -* oo. This contradicts the fact that z0 G n(F).

Let z0 G Í/. Then, for z # z0, we have

(*) (r-*<,)*(*) «/(*),

where

(**) g(z) = (z-z0)-\f(z)-f(z0)).

Since z0 G n(F), the operator T - z0 is bounded below and thus has a

bounded inverse when it is considered as a linear map from H onto its range

(T - zQ)H (which is closed). (We shall designate this inverse by (T - z0) .)

From (*) we see that g is bounded on a neighborhood of z0 and hence, by

(**),/is continuous at z0. We have shown that/is a continuous function. By

(*) again, we have

lim g(z) = \im(T-zoylf(z) = (T - zoylf(z0).
z->z0 z^>z0

Hence, by (**),/is differentiable at z0. The proof is complete.

Remark. Since the boundary of Sp(F) is contained in n(F) and is a closed

set, the open set U in the above proposition is a disjoint union of two open

subsets t/j and U2 with Ux C Sp(F) and U2 Fl Sp(F) = 0. It is well known

that the map z h* (F - z)     is analytic on U2. Hence our interest of the

proposition is the case when U C Sp(F)\XI(F).

Corollary. If T E B(H), F is a compact set in C and R 2 n(F), then

XT(F) is closed.

Proof. In fact, by Proposition 1, we have

XT(F) =     PI   (T-z)H
zEC\F

where each (T - z)H is closed.

Proposition 2. Let T E B(H), F be a compact set in C and x E H. If

f. C\F -> H is a bounded vector-valued function such that (T — z)f(z) = x and

XTt (F* ) is dense in H, then f is analytic.

Proof. Since / is bounded, it suffices to show that the map z h> (f(z),y) is

analytic for each y in a dense subset of H. Let y E XT, (F* ). Then there is an

analytic function g: C\F* -> H such that (T* - z)g(z) = y for z G F.

Hence, for z G F, we have
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(f(*),y) = (f(z)AT* - z)g(z)) = ((T-z)f(z),g(z)) = (x,g(z)).

Clearly z h» (x,g(z)) is analytic. The proof is complete.

Remark. The above results can be easily generalized to operators on

Banach spaces.

As an application of Proposition 2, we have the following:

Proposition 3. Let T E B(H). Suppose: (1) there is a nonzero invariant

subspace K of T such that T\K is a normal operator, and (2) there is a nonzero

positive operator P such that (T - z) (T - z) > P for all z E C. Then T has

a nontrivial spectral subspace.

Proof. Let y E H be a vector such that x = Py # 0. By Putnam [3,

Theorem 6], there exists a bounded vector-valued function/: C -> H such that

(T* - z)f(z) = x.

Let E be the resolution of identity for T\K and <>D be the collection of all

closed discs D in C such that Sv(T\K) n (interior of D) # 0. For D E %

we have XT(D) 2 E(D)K # {0}. Hence it suffices to show that XT(D) is not

dense in H for some D in fiD. Suppose otherwise. Then, by Proposition 2, for

each D E %fis analytic on C\Z>*. Hence/is a bounded entire function with

lim /(z)=lim (T* -z)~lx = 0.
|z|->00 \z\-KX>

By Liouville's theorem, / = 0, contradicting x ^ 0 and (T* - z)f(z) = x.

The proof is complete.

Corollary. Let Tx E B(HX) and T2 E B(H2). Suppose: (1) there is a

nontrivial invariant subspace K of Tx such that TX\K is a normal operator, and (2)

T2 is a nonscalar M-hyponormal operator (that is,

(T2-z)(T2-z)*<M(T2-z)*(T2-z)

for all z in C). Then T = 7", © T2 has a nontrivial spectral subspace.

Proof. Let P be the positive square root of (T* T2 - T2 T*)2. If P = 0,

then T2 is normal and we are done. Hence we may assume that P =£ 0. By

Radjabalipour [5, Theorem 2], there is a positive number k such that

(T - z)*(T - z) > kP2 for all z in C. Now the corollary follows from

Proposition 3.

Remark. We do not know in the above corollary if Tx and T2 separately have

nontrivial hyperinvariant subspaces (provided they are nonscalar operators).
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