THE DENSITY CHARACTER OF UNIONS

W. W. COMFORT¹ AND TEKLEHAIMANOT RETTA

ABSTRACT. We consider only completely regular, Hausdorff spaces. Responding to a question of R. Levy and R. H. McDowell [Proc. Amer. Math. Soc. 49 (1975), 426–430] we show that for $\omega < \gamma < 2^{2^m}$ there is a separable space equal to the (appropriately topologized) disjoint union of γ copies of the "Stone-Cech remainder" $\beta N \setminus N$. More generally, denoting density character by d and weight by w, we prove this

THEOREM. The following statements about infinite cardinal numbers γ and α are equivalent: (a) $2^{\alpha} < 2^{\gamma}$ and $\gamma < 2^{2^{\alpha}}$; (b) For every family $\{X_{\xi} : \xi < \gamma\}$ of spaces, with $w(X_{\xi}) < 2^{\alpha}$ for all $\xi < \gamma$, the set-theoretic disjoint union $X = \bigcup_{\xi < \gamma} X_{\xi}$ admits a topology such that $d(X) < \alpha$ and each X_{ξ} is a topological subspace of X.

The following observation (a special case of Theorem 3.1) suggests that it may be difficult to achieve a stronger result: If $\alpha > \omega$ and X_0 and X_1 denote copies of the discrete space of cardinality α^+ , then the disjoint union $X = X_0 \cup X_1$ admits a topology (making each X_i a topological subspace) such that $d(X) \leq \alpha$.

1. Notation and references to the literature. By a "space" we mean a completely regular, Hausdorff space. The symbols d and w were defined in the abstract. For $\alpha \ge \omega$ we set

$$\log \alpha = \min\{\gamma \colon 2^{\gamma} \geq \alpha\}.$$

When $\alpha \ge \omega$ we denote also by the symbol α the discrete space of cardinality α , and by $\beta(\alpha)$ its Stone-Čech compactification. As usual we identify $\beta(\alpha)$ with the set of ultrafilters on α , topologized so that

$$\{\{p \in \beta(\alpha): A \in p\}: A \subset \alpha\}$$

is a base for the closed sets; evidently $w(\beta(\alpha)) \le 2^{\alpha}$, so that $w(X) \le 2^{\alpha}$ for all $X \subset \beta(\alpha)$. We set

$$U(\alpha) = \{ p \in \beta(\alpha) : |A| = \alpha \text{ for all } A \in p \},$$

and we recall (see for example Corollary 7.15 of [1]) that there are $p \in U(\alpha)$ with no basis of cardinality $< 2^{\alpha}$. Thus we have:

1.1. If
$$\alpha \geq \omega$$
, then $w(U(\alpha)) = 2^{\alpha}$.

Received by the editors April 12, 1976 and, in revised form, October 29, 1976.

AMS (MOS) subject classifications (1970). Primary 54A25; Secondary 54A10.

Key words and phrases. Density character, weight, Tychonoff space.

¹This author gratefully acknowledges support received from the National Science Foundation under grant NSF-MPS73-08937A02.

It is well known and easy to prove that for every space X the family of regular-open subsets of X (i.e., the family of subsets U of X such that U = int cl U) is a base for X. Further, if D is dense in X and U and V are different regular-open subsets of X, then $U \cap D \neq V \cap D$. This proves 1.2 below. Statements 1.3, 1.4 and 1.5 are equally familiar. For proofs, see for example Corollaries 2.11, 3.18, and 12.20 (together with Lemma 7.12 (b)) of [1].

1.2. If X is a space then $w(X) \leq 2^{d(X)}$.

We denote the real line in its usual topology by the symbol R.

- 1.3. If X is a space such that $w(X) \le \alpha$, then X is (homeomorphic with) a subspace of \mathbb{R}^{α} ; thus $|X| \le 2^{w(X)}$.
 - 1.4. If $\alpha > \omega$ then $d(\mathbb{R}^{2^{\alpha}}) \leq \alpha$.
- 1.5. If $\alpha > \omega$ and V is a nonempty, open subset of $U(\alpha)$, then there is a family \mathfrak{A} of pairwise disjoint, nonempty open subsets of V such that $|\mathfrak{A}| = \alpha^+$; hence $d(V) > \alpha$.
- 2. Topologizing a disjoint union. If X_{ξ} is a subspace of a space X such that $d(X) \leq \alpha$, then from 1.2 above we have $w(X_{\xi}) \leq w(X) \leq 2^{\alpha}$. This explains the presence of the hypothesis " $w(X_{\xi}) \leq 2^{\alpha}$ " in the following result.
- 2.1. Theorem. Let α and γ be cardinals, with $\alpha > \omega$. The following statements are equivalent.
 - (a) $\log 2^{\alpha} \leq \gamma \leq 2^{2^{\alpha}}$;
- (b) for every family $\{X_{\xi} \colon \xi < \gamma\}$ of (pairwise disjoint) nonempty spaces, with $w(X_{\xi}) \leq 2^{\alpha}$ for all $\xi < \gamma$, the set-theoretic disjoint union $X = \bigcup_{\xi < \gamma} X_{\xi}$ admits a topology such that $d(X) \leq \alpha$ and each X_{ξ} is a topological subspace of X.

PROOF. (a) \Rightarrow (b). Let $w(X_{\xi}) \le 2^{\alpha}$ for all $\xi < \gamma$, define $\delta = \log 2^{\alpha}$, using 1.4 above let $D = \{p(\xi): \xi < \delta\}$ be a faithfully indexed dense subset of $\mathbb{R}^{2^{\alpha}}$, and choose $p(\delta) \in \mathbb{R}^{2^{\alpha}} \setminus D$. For $S \subset 2^{\alpha}$ we denote by π_S the projection from $\mathbb{R}^{2^{\alpha}}$ onto \mathbb{R}^{S} , and we choose $A \subset 2^{\alpha}$ such that $|A| = \delta$ and $\pi_A |D| \cup \{p(\delta)\}$ is a one-to-one function. For $\xi \le \delta$ we define

$$G_{\xi} = \pi_A^{-1} \big(\pi_A (p(\xi)) \big) = \big\{ x \in \mathbf{R}^{2^{\alpha}} : x_{\eta} = p(\xi)_{\eta} \text{ for all } \eta \in A \big\},$$

and we note (since $\delta \leq \alpha < 2^{\alpha}$) that G_{ξ} is homeomorphic to $\mathbf{R}^{2^{\alpha}}$. It follows from 1.3 above that for $\xi < \delta$ the space X_{ξ} is (homeomorphic with) a subspace of G_{ξ} ; we assume without loss of generality, using the fact that G_{ξ} is a homogeneous space, that $p(\xi) \in X_{\xi}$ for all $\xi < \delta$.

If $\gamma = \delta$ then since D is dense in $\mathbf{R}^{2^{\alpha}}$ and

$$D \subset X = \bigcup_{\xi < \gamma} X_{\xi} \subset \bigcup_{\xi < \gamma} G_{\xi} \subset \mathbf{R}^{2^{\alpha}}$$

we have $d(X) \le \alpha$ and the proof is complete. If $\delta < \gamma \le 2^{2^{\alpha}}$ then we note that since G_{δ} is homeomorphic with $\mathbf{R}^{2^{\alpha}}$, hence with $\mathbf{R}^{2^{\alpha}} \times \mathbf{R}^{2^{\alpha}}$, the space G_{δ} contains γ disjoint copies (indeed, $2^{2^{\alpha}}$ disjoint copies) of $\mathbf{R}^{2^{\alpha}}$. Thus the spaces X_{ξ} (with $\delta \le \xi < \gamma$) are homeomorphic with pairwise disjoint subspaces of G_{δ}

and again, giving $X = \bigcup_{\xi < \delta} X_{\xi}$ the topology inherited from $\mathbb{R}^{2^{\alpha}}$, we have $d(X) \le \alpha$ because $D \subset X \subset \mathbb{R}^{2^{\alpha}}$ and D is dense in $\mathbb{R}^{2^{\alpha}}$.

(b) \Rightarrow (a). From 1.2 and 1.3 we have $|X| \le 2^{2^{d(X)}}$, so that necessarily $\gamma \le 2^{2^{\alpha}}$.

Let $\gamma < \log 2^{\alpha}$, let $X_0 = U(\alpha)$ and for $0 < \xi < \gamma$ let X_{ξ} be the singleton space $\{\xi\}$, suppose that the set-theoretic disjoint union $X = \bigcup_{\xi < \gamma} X_{\xi}$ is topologized as in (b), and let D be a dense subset of X such that $|D| \le \alpha$. If $D \setminus X_0$ is dense in X then we have $d(X) \le \gamma$ and hence (from 1.1 and 1.2),

$$2^{\alpha} = w(X_0) \le w(X) \le 2^{d(X)} \le 2^{\gamma} < 2^{\alpha},$$

a contradiction. Thus there is a nonempty, open subset V of X_0 such that $V \subset \operatorname{cl}_{X_0}(D \cap X_0)$, so that $V \subset \operatorname{cl}_V(D \cap V)$. But then $d(V) \leq |D| \leq \alpha$, contrary to 1.5 above.

The proof is complete.

The following consequence of Theorem 2.1 was proved by R. Levy and R. H. McDowell [3] in the case $\omega \leq \gamma \leq 2^{\omega}$; they asked, in effect, if the result could be achieved for $2^{\omega} < \gamma \leq 2^{2^{\omega}}$. We note that in our abstract [2] we have outlined a proof of Corollary 2.2 based on the Levy-McDowell method of [3]; this method is quite different from those of the present paper.

- 2.2. COROLLARY. If $\omega \leqslant \gamma \leqslant 2^{2^{\omega}}$, there is a separable space equal to the (appropriately topologized) disjoint union of γ copies of the space $U(\omega)$.
- 3. A final remark. It is tempting to believe that for every collection $\{X_{\xi}: \xi < \gamma\}$ of spaces such that $\gamma < \log 2^{\alpha}$ and $d(X_{\xi}) > \alpha$ for all $\xi < \gamma$, the disjoint union $X = \bigcup_{\xi < \gamma} X_{\xi}$ admits no topology such that $d(X) \le \alpha$ and each X_{ξ} is a topological subspace. The following simple example, though susceptible to substantial generalization, is sufficient to dispel this belief. Additional examples are expected in [4].
- 3.1. THEOREM. Let α and γ be cardinals with $\alpha \geqslant \omega$ and with $2 \leqslant \gamma \leqslant 2^{2^{\alpha}}$, and for $\xi < \gamma$ let X_{ξ} be a discrete space such that $|X_{\xi}| = \alpha^{+}$. Then the set-theoretic disjoint union $X = \bigcup_{\xi < \gamma} X_{\xi}$ admits a topology such that $d(X) = \alpha$ and each X_{ξ} is a topological subspace of X.

PROOF. Since $w(X_{\xi}) = \alpha^+ \le 2^{\alpha}$, the case $\log 2^{\alpha} \le \gamma$ is handled by Theorem 2.1. We assume in what follows that $\gamma \le \alpha$.

Let f be a fixed-point-free permutation of γ , for $\xi < \gamma$ choose $D_{\xi} \subset X_{\xi}$ such that $|D_{\xi}| = \alpha$, and identify $X_{f(\xi)} \setminus D_{f(\xi)}$ with a (discrete) family of uniform ultrafilters over the discrete space D_{ξ} . (Such a family exists by 1.5 above.) Writing

$$Y_{\xi} = D_{\xi} \cup \left(X_{f(\xi)} \setminus D_{f(\xi)} \right)$$

we have the topological inclusion $D_{\xi} \subset Y_{\xi} \subset \beta(D_{\xi})$, so that $d(Y_{\xi}) = \alpha$. Now let X be the topological disjoint union of the spaces Y_{ξ} -i.e., a subset S of X is open if and only if $S \cap Y_{\xi}$ is open in Y_{ξ} for each $\xi < \gamma$. It is clear that $d(X) = \alpha$. Finally for $\xi < \gamma$ there is $\eta < \gamma$ such that $\eta \neq \xi$ and $\xi = f(\eta)$;

since D_{ξ} and $X_{\xi} \setminus D_{\xi}$ are disjoint discrete subsets of the disjoint open-and-closed subspaces Y_{ξ} and Y_{η} respectively, the set X_{ξ} is discrete in X, as required.

REFERENCES

- 1. W. W. Comfort and S. Negrepontis, *The theory of ultrafilters*, Springer-Verlag, Berlin and New York, 1974.
- 2. W. W. Comfort and Teklehaimanot Retta, Separable unions of copies of βN \ N, Notices Amer. Math. Soc. 22 (1975), A-716. Abstract #75T-G121.
- 3. R. Levy and R. H. McDowell, *Dense subsets of \beta X*, Proc. Amer. Math. Soc. **50** (1975), 426-430. MR **51** #6733.
 - 4. Teklehaimanot Retta, Doctoral dissertation, Wesleyan Univ., 1977.

DEPARTMENT OF MATHEMATICS, WESLEYAN UNIVERSITY, MIDDLETOWN, CONNECTICUT 06457