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THE DENSITY CHARACTER OF UNIONS

w. W. COMFORT1 and teklehaimanot retta

Abstract. We consider only completely regular, Hausdorff spaces. Re-

sponding to a question of R. Levy and R. H. McDowell [Proc. Amer. Math.

Soc. 49 (1975), 426-430] we show that for u < y < 22" there is a separable

space equal to the (appropriately topologized) disjoint union of v copies of

the "Stone-Cech remainder" ßN \ N. More generally, denoting density

character by d and weight by w, we prove this

Theorem. The following statements about infinite cardinal numbers y and a

are equivalent: (a) 2" < 2Y and y < 22"; (b) For every family {X(: £ < y) of

spaces, with w(X^) < 2" for all £ < y, the set-theoretic disjoint union

X = U £<T-^£ admits a topology such that d(X) < a and each X^ is a

topological subspace ofX.

The following observation (a special case of Theorem 3.1) suggests that it

may be difficult to achieve a stronger result: If a > u and X0 and Xx denote

copies of the discrete space of cardinality a + , then the disjoint union

X = X0 u Xx admits a topology (making each X¡ a topological subspace)

such that d(X) < a.

1. Notation and references to the literature. By a "space" we mean a

completely regular, Hausdorff space. The symbols d and w were defined in

the abstract. For a > to we set

log a = min{y: 2y > a).

When a > to we denote also by the symbol a the discrete space of

cardinality a, and by ß(a) its Stone-Cech compactification. As usual we

identify ß (a) with the set of ultrafilters on a, topologized so that

{{PGß(a):A G p): A G a)

is a base for the closed sets; evidently w(ß(a)) < 2a, so that w(X) < 2" for

all X G ß (a). We set

U(a)= {p G ß(a): \A\ = a forain G p),

and we .recall (see for example Corollary 7.15 of [1]) that there are/j E U(a)

with no basis of cardinality < 2". Thus we have:

1.1. If a > w, then w(i/(a)) = 2".
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It is well known and easy to prove that for every space X the family of

regular-open subsets of X (i.e., the family of subsets U of X such that U =

int cl U) is a base for X. Further, if D is dense in X and U and V are

different regular-open subsets of X, then U n D =£ V n D. This proves 1.2

below. Statements 1.3, 1.4 and 1.5 are equally familiar. For proofs, see for

example Corollaries 2.11, 3.18, and 12.20 (together with Lemma 7.12 (b)) of

[1].
1.2. If X is a space then w(X) < 2diX\

We denote the real line in its usual topology by the symbol R.

1.3. If A' is a space such that w(X) < a, then X is (homeomorphic with) a

subspace of Ra; thus |*| < 2w(X\

1.4. If a > wthen(i(R2") < a.

1.5. If a > w and F is a nonempty, open subset of U(a), then there is a

family % of pairwise disjoint, nonempty open subsets of V such that

|9i| = a + ; hence d(V) > a.

2. Topologizing a disjoint union. If X( is a subspace of a space X such that

d(X) < a, then from 1.2 above we have w(X() < w(A') < 2". This explains

the presence of the hypothesis "w(X() < 2"" in the following result.

2.1. Theorem. Le7 a and y be cardinals, with a > u. The following state-

ments are equivalent.

(a) log 2" < y < 22°;

(b)for every family [X(: £ < y) of (pairwise disjoint) nonempty spaces, with

w(Xç) < 2" for all £ < y, the set-theoretic disjoint union X = Ue<yXç admits

a topology such that d(X) < a and each X¿ is a topological subspace of X.

Proof, (a) => (b). Let w(Xt) < 2" for all £ < y, define 5 = log 2", using 1.4

above let D = {/?(£):£< 8) be a faithfully indexed dense subset of R2°, and

choose p(8) E R2° \ D. For S c 2" we denote by tts the projection from R2°

onto Rs, and we choose A c 2a such that |/1| = 8 and wJZ) u {/?(ô)j is a

one-to-one function. For £ < <5 we define

Gj = TJ'KOK©)) = {* e R2°: *, = /»«), for alii, e ¿},

and we note (since 8 < a < 2a) that G¿ is homeomorphic to R2°. It follows

from  1.3 above that for £ < ô the space X^ is (homeomorphic with) a

subspace of G{; we assume without loss of generality, using the fact that G( is

a homogeneous space, that/?(£) e Xt for all £ < 5.

If y = 8 then since D is dense in R2° and

flCl=U^cUG{cR2'

we have d(X) < a and the proof is complete. If 8 < y < 22° then we note

that since Gs is homeomorphic with R2°, hence with R2° X R2°, the space Gs

contains y disjoint copies (indeed, 22° disjoint copies) of R2°. Thus the spaces

X( (with 8 < £ < y) are homeomorphic with pairwise disjoint subspaces of Gs
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and again, giving X = IJ {<«^{ the topology inherited from R2°, we have

d(X) < a because D c X c R2° and D is dense in R2°.

(b)=*(a). From 1.2 and 1.3 we have |^V | < 22 , so that necessarily

y < 22°.

Let y < log 2", let X0 = U(a) and for 0 < £ < y let X^ be the singleton

space {£}, suppose that the set-theoretic disjoint union X = \J^<yXi is

topologized as in (b), and let D be a dense subset of X such that \D\ < a. If

D \ XQ is dense in X then we have d(X) < y and hence (from 1.1 and 1.2),

2" = w(X0) < w(X) < 2d(x) < V < 2",

a contradiction. Thus there is a nonempty, open subset V of X0 such that

V G c\Xo(D n X0), so that V c c\v(D n F). But then d(V) < |/)| < a,

contrary to 1.5 above.

The proof is complete.

The following consequence of Theorem 2.1 was proved by R. Levy and R.

H. McDowell [3] in the case to < y < 2"; they asked, in effect, if the result

could be achieved for 2" < y < 22". We note that in our abstract [2] we have

outlined a proof of Corollary 2.2 based on the Levy-McDowell method of [3];

this method is quite different from those of the present paper.

2.2. Corollary. // to < y < 2T, there is a separable space equal to the

(appropriately topologized) disjoint union of y copies of the space U(cS).

3. A final remark. It is tempting to believe that for every collection [X(:

£ < y} of spaces such that y < log 2" and d(X^ > a for all £ < y, the

disjoint union X = Uj^A^ admits no topology such that d(X) < a and

each A"f is a topological subspace. The following simple example, though

susceptible to substantial generalization, is sufficient to dispel this belief.

Additional examples are expected in [4].

3.1. Theorem. Let a and y be cardinals with a > to and with 2 < y < 22",

and for £ < y let Xç be a discrete space such that \X^\ = a + . Then the

set-theoretic disjoint union X = IJ t<yX( admits a topology such that d(X) = a

and each X( is a topological subspace of X.

Proof. Since w(X^) = a+ < 2", the case log 2" < y is handled by Theo-

rem 2.1. We assume in what follows that y < a.

Let / be a fixed-point-free permutation of y, for £ < y choose D^ c X(

such that \Dç\ = a, and identify Xf{() \ Df{i) with a (discrete) family of

uniform ultrafilters over the discrete space D^ (Such a family exists by 1.5

above.) Writing

Yi=D(u(XM)\Dm)

we have the topological inclusion Dç c Y( c J8(Z)£), so that d(Y^) = a. Now

let X be the topological disjoint union of the spaces F^-i.e., a subset 5 of X is

open if and only if S n Yi is open in Y^ for each £ < y. It is clear that

d(X) = a. Finally for £ < y there is tj < y such that 17 =h £ and £ = /(tj);
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since Z)f and Xt \ D^ are disjoint discrete subsets of the disjoint open-and-

closed subspaces Yi and Yv respectively, the set X^ is discrete in X, as

required.
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