ON GENERIC ASYMPTOTIC STABILITY OF DIFFERENTIAL EQUATIONS IN BANACH SPACE

F. S. DE BLASI AND J. MYJAK¹

ABSTRACT. The asymptotic stability of the zero solution of the differential equation (*) x' = Ax + f(x) is studied, when the pertubation f is in a given complete metric space \mathfrak{R} . It is known that the zero solution of (*) is asymptotically stable whenever f is in a certain proper subset $\mathfrak{R} \subset \mathfrak{R}$. It is shown that, while \mathfrak{R} is of Baire first category in \mathfrak{R} , on the contrary the set \mathfrak{R}_0 of all those f for which the zero solution of (*) is asymptotically stable is a proper residual subset of \mathfrak{R} .

1. Introduction. Denote by E a Banach space with norm $\|\cdot\|$. We shall consider the linear stationary equation

(L)
$$x' = Ax \qquad (' = d/dt)$$

where $A: E \to E$ is a linear bounded operator whose spectrum lies in the interior of the left halfplane, so that

(P)
$$||e^{At}|| \le ke^{-\alpha t}$$
 for all $t \in \mathbb{R}^+$ $(\alpha > 0, 1 \le k < +\infty)$.

We associate with (L) the perturbed equation

$$x' = Ax + f(x)$$

in which the perturbing term f is supposed belonging to some metric space to be specified.

Denote by B_r the open ball in E with center the origin and radius r > 0. Define

$$\mathfrak{M} = \left\{ f : B_r \to E | f(0) = 0, \| f(x) - f(y) \| \leq \gamma_f \| x - y \|, \gamma_f k / \alpha \leq 1 \right\},$$

$$\mathfrak{N} = \left\{ f \in \mathfrak{M} | \gamma_f k / \alpha < 1 \right\}.$$

 \mathfrak{M} , endowed with the distance $||f - g|| = \sup\{||f(x) - g(x)||: x \in B_r\}$, becomes a complete metric space. Observe that \mathfrak{M} is convex.

Under the hypotheses made over A the zero solution of (L) is asymptotically stable. This property remains valid for (P) provided that the perturbing term f is sufficiently small, in particular if $f \in \mathfrak{N}$ [5, p. 504] but it is, in general, lost if it is assumed $f \in \mathfrak{N}$. In this case all one can say is that the origin is merely stable for (P).

Received by the editors July 15, 1976.

AMS (MOS) subject classifications (1970). Primary 34D20, 34G05; Secondary 58F10.

Key words and phrases. Differential equations, Banach space, Asymptotically stable, generically asymptotically stable, Baire first category, residual set.

¹Supported by a CNR grant, University of Florence.

If E is a Hilbert space the set \mathfrak{N} turns out to be small (in the sense of the Baire category) with respect to \mathfrak{M} , that is \mathfrak{N} is of first category in \mathfrak{M} . Denote by \mathfrak{M}_0 the set of all $f \in \mathfrak{M}$ such that the origin is asymptotically stable for (P). Clearly $\mathfrak{M}_0 \supset \mathfrak{N}$. We might then expect that \mathfrak{M}_0 is only a bit larger than \mathfrak{N} itself, namely that \mathfrak{M}_0 is still of first category in \mathfrak{M} . In the present note it will be shown just the opposite. The set \mathfrak{M}_0 is in fact residual in \mathfrak{M} (see Theorem 2). This result can be read in another way: with respect to the class \mathfrak{M} of admissible perturbations, the hypothesis $f \in \mathfrak{N}$, though sufficient to guarantee the asymptotic stability of the zero solution of (P), is far away from being a necessary condition as well. To prove the aforementioned theorem we shall use, in the appropriate form, some ideas which go back to Orlicz [4] and which have been further developed in a number of recent papers (see [7] and [1], [2]).

2. **Preliminary lemmas.** In the sequel to emphasize the presence of the perturbation f in the differential equation (P) we shall denote this equation, for a given perturbation f, by [A, f]. We agree that saying [A, f] is stable (asymptotically stable) means that the zero solution of [A, f] is stable (asymptotically stable).

REMARK. If $f \in \mathfrak{N}$ and $x_0 \in B_r$, [A, f] has a unique solution $x^f(\cdot; x_0)$ which satisfies $x^f(0; x_0) = x_0$ [3]. It follows from the proof of the next lemma that, for every $f \in \mathfrak{N}$,

$$x_0 \in B_{r/k} \Rightarrow ||x^f(t; x_0)|| \le r \text{ for all } t \in \mathbb{R}^+,$$

that is each solution of [A, f] which starts in $B_{r/k}$ is defined for all $t \in \mathbb{R}^+$ and does not leave B_r .

LEMMA 1. For every $f \in \mathfrak{M}$, [A, f] is stable.

PROOF. Let $f \in \mathfrak{M}$ and $\varepsilon > 0$ ($\varepsilon < r$). We wish to show that there is $\delta > 0$ ($\delta < r$) such that

$$||x_0|| < \delta \Rightarrow ||x^f(t; x_0)|| < \varepsilon \text{ for all } t \in \mathbb{R}^+.$$

By Lagrangia formula

$$x^{f}(t; x_{0}) = e^{At}x_{0} + \int_{0}^{t} e^{A(t-s)} f(x^{f}(s; x_{0})) ds$$

and

$$||x^{f}(t; x_{0})|| \le ||e^{At}|| ||x_{0}|| + \int_{0}^{t} ||e^{A(t-s)}|| ||f(x^{f}(s; x_{0}))|| ds$$

$$\le ke^{-\alpha t} ||x_{0}|| + \gamma k \int_{0}^{t} e^{-\alpha(t-s)} ||x^{f}(s; x_{0})|| ds.$$

Multiplying both sides of the last inequality by $e^{\alpha t}$, hence using Gronwall's inequality we get

$$||x^f(t;x_0)||e^{\alpha t} \leqslant k||x_0||e^{\gamma kt}$$

that is

$$||x^f(t; x_0)|| \le k||x_0||e^{(\gamma k - \alpha)t}.$$

Since $\gamma k - \alpha \le 0$ the claim follows at once if we let $\delta < \varepsilon/k$.

EXAMPLE. Associate with the stationary equation x' = -ax (a > 0) the perturbed equation given by

$$(2) x' = -ax + bx$$

where b is a real number. Since in this example k = 1 and $\alpha = a$, the perturbation term bx is certainly in \mathfrak{N} provided that $|b| \le a$. Notice that, if b = -a, the origin is asymptotically stable for (2) while, if b = a, the origin is only stable (but not asymptotically stable).

LEMMA 2. The set N is dense in N.

PROOF. Let $f \in \mathfrak{M}$ and denote by γ the corresponding Lipschitz constant. Let $\varepsilon > 0$. Set $g_{\lambda} = \lambda f$, where $0 \le \lambda < 1$, and observe that g_{λ} has Lipschitz constant equal to $\lambda \gamma$, thus $g_{\lambda} \in \mathfrak{N}$. Then

$$||g_{\lambda} - f|| = \sup_{x \in B_{\epsilon}} ||\lambda f(x) - f(x)|| \le (1 - \lambda)\alpha r$$

and $||g_{\lambda} - f|| < \varepsilon \text{ if } \lambda > 1 - \varepsilon/\alpha r.$

Denote by $S(f, \varepsilon)$ the open ball in \mathfrak{M} with center f and radius $\varepsilon > 0$.

LEMMA 3. Let $g \in \mathfrak{N}$ and $\varepsilon > 0$ ($\varepsilon \leq r$). Then there exists $\delta = \delta_g(\varepsilon) > 0$ such that, for every $x_0 \in B_{r/k}$,

$$f \in S(g, \delta) \Rightarrow ||x^f(t; x_0) - x^g(t; x_0)|| < \varepsilon \text{ for all } t \in \mathbb{R}^+,$$

where $x^f(\cdot; x_0)$ and $x^g(\cdot; x_0)$ are solutions of [A, f] and [A, g] respectively, with initial point x_0 .

PROOF. After the Remark any solution of [A, f] with $f \in \mathfrak{N}$, which starts in $B_{r/k}$ remains in B_r for every $t \in \mathbb{R}^+$. From (1) and the analogous equation for $x^g(\cdot; x_0)$ we obtain

$$\begin{aligned} \|x^{f}(t; x_{0}) - x^{g}(t; x_{0})\| &\leq \int_{0}^{t} \|e^{A(t-s)}\| \|f(x^{f}(s; x_{0})) - g(x^{f}(s; x_{0}))\| ds \\ &+ \int_{0}^{t} \|e^{A(t-s)}\| \|g(x^{f}(s; x_{0})) - g(x^{g}(s; x_{0}))\| ds \\ &\leq \delta k \int_{0}^{t} e^{-\alpha(t-s)} ds + \gamma k \int_{0}^{t} e^{-\alpha(t-s)} \|x_{\cdot}^{f}(s; x_{0}) - x^{g}(s; x_{0})\| ds, \end{aligned}$$

where γ is the Lipschitz constant of g. Then

$$||x^{f}(t; x_{0}) - x^{g}(t; x_{0})||e^{\alpha t} \leq \frac{\delta k}{\alpha} e^{\alpha t} + \gamma k \int_{0}^{t} ||x^{f}(s; x_{0}) - x^{g}(s; x_{0})||e^{\alpha s} ds$$

and, by Gronwall's inequality,

$$||x^f(t;x_0) - x^g(t;x_0)|| \le \frac{\delta k}{\alpha} \left[e^{\alpha t} + \gamma k \int_0^t e^{\alpha s} e^{\gamma k(t-s)} ds \right]$$

which furnishes

$$||x^f(t; x_0) - x^g(t; x_0)|| \le \delta \frac{k}{\alpha - \gamma k}$$
, for all $t \in \mathbb{R}^+$.

Since $\alpha - \gamma k > 0$ to complete the proof it suffices choosing δ such that $0 < \delta < (\alpha - \gamma k)/k$.

3. Main results.

THEOREM 1. Let E be a Hilbert space. Then the set $\mathfrak N$ is of first category in $\mathfrak N$.

PROOF. Let $\{\gamma_i\}$, $0 < \gamma_i < k/\alpha$, be an increasing sequence of reals such that $\gamma_i \to k/\alpha$ as $i \to \infty$. Define

$$\mathfrak{N}_i = \big\{ f \in \mathfrak{N} | \|f(x) - f(y)\| \le \gamma_i \|x - y\| \big\}.$$

It is clear that \mathfrak{N}_i is closed and $\mathfrak{N} = \bigcup_{i=1}^{\infty} \mathfrak{N}_i$. We claim that

int
$$\mathfrak{N}_i = \emptyset$$
, $i = 1, 2, \ldots$

Otherwise, for some i, there exist $f \in \mathfrak{N}_i$ and $\varepsilon > 0$ such that $S(f, \varepsilon) \subset \mathfrak{N}_i$. We shall prove that in this sphere there exists at least one function $g \in \mathfrak{N}$ which is not in \mathfrak{N}_i .

Choose η such that $0 < \eta < \min\{r, \varepsilon k/2\alpha\}$ and set $\sigma = (\alpha - \gamma_i k)\eta/2\alpha$. Define

$$\tilde{g}(x) = \begin{cases} \alpha x/k, & x \in B_{\sigma}, \\ f(x), & x \in B_{r} \setminus B_{\eta}. \end{cases}$$

We shall show that \tilde{g} satisfies the Lipschitz condition

$$\|\tilde{g}(x) - \tilde{g}(y)\| \le \alpha \|x - y\|/k$$
 on $B_a \cup (B_c \setminus B_n)$.

To see this it is sufficient to verify the above inequality for $x \in B_{\sigma}$ and $y \in B_r \setminus B_n$. For such choice of x and y we have

$$\|\tilde{g}(y) - \tilde{g}(x)\| = \|f(y) - \alpha x/k\| \le \alpha \|x\|/k + \|f(y) - f(0)\|$$

$$\le \alpha \|x\|/k + \gamma_i \|y\| \le \alpha \sigma/k + \gamma_i \|y\|$$

$$\le \alpha (\|y\| - \sigma)/k \le \alpha \|y - x\|/k.$$

By virtue of a theorem of Valentine [6] there exists an extension g of \tilde{g} which is defined all over B_r and is there Lipschitzian with the same constant α/k . Obviously $g \in S(f, \varepsilon)$ and $g \not\in \mathfrak{N}_i$, a contradiction. This completes the proof.

Define

$$\mathfrak{M}_0 = \{ f \in \mathfrak{M} | [A, f] \text{ is asymptotically stable} \}.$$

THEOREM 2. The set \mathfrak{N}_0 is residual in \mathfrak{N} .

PROOF. Define $V: \mathfrak{M} \to \mathbb{R}^+$ by

$$V(f) = \sup_{x_0 \in B_{r/k}} \overline{\lim}_{t \to \infty} \|x^f(t; x_0)\|,$$

where $x^f(\cdot; x_0)$ is the solution of [A, f] through x_0 . The functional V has the properties: (a) V(f) = 0 for each $f \in \mathfrak{N}$; (b) If $f \in \mathfrak{M}$ and V(f) = 0, then [A, f] is asymptotically stable; (c) Let $g \in \mathfrak{N}$. Then for every $f \in S(g, \delta_g(1/n))$ we have $V(f) \leq 1/n$.

Indeed, (a) and (b) are obvious while (c) follows immediately from the inequality

$$||x^f(t; x_0)|| \le ||x^f(t; x_0) - x^g(t; x_0)|| + ||x^g(t; x_0)||$$

by virtue of Lemma 3 and the fact that [A, g] is asymptotically stable. Now define

$$\mathfrak{M}_1 = \bigcap_{n=1}^{\infty} \bigcup_{g \in \mathfrak{R}} S\left(g, \delta_g\left(\frac{1}{n}\right)\right).$$

Observe that, for every $f \in \mathfrak{M}_1$, V(f) = 0 thus [A, f] is asymptotically stable. Clearly \mathfrak{M}_1 is dense in \mathfrak{M} since $\mathfrak{M}_1 \supset \mathfrak{N}$. On the other hand \mathfrak{M}_1 is a G_δ subset of \mathfrak{M} and, \mathfrak{M} being a complete metric space, it follows that \mathfrak{M}_1 is a residual set in \mathfrak{M} . Since $\mathfrak{M}_0 \supset \mathfrak{M}_1$, the proof is complete.

4. Concluding remarks. The results of the preceding section suggest the following definition of stability.

Consider the perturbed equation [A, f] and suppose that the perturbing term f is in some complete metric space \mathcal{F} .

DEFINITION. The zero solution of [A, f], $f \in \mathcal{F}$, is said to be generically stable (generically asymptotically stable) on \mathcal{F} if the set of all $f \in \mathcal{F}$ for which [A, f] admits the zero solution and this solution is stable (asymptotically stable) is residual in \mathcal{F} .

Then Theorem 2 can be rephrased as follows. The zero solution of [A, f], $f \in \mathfrak{N}$ is generically asymptotically stable on \mathfrak{N} .

REFERENCES

- 1. F. S. De Blasi and J. Myjak, Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris Sér. A 283 (1976), 185–187.
- 2. _____, Generic properties of hyperbolic partial differential equations, J. London Math. Soc. (to appear).
- 3. G. E. Ladas and V. Laksmikantham, Differential equations in abstract spaces, Academic Press, New York, 1972.
- 4. W. Orlicz, Zur Theorie der Differentialgleichung y' = f(x, y), Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. A 8/9 (1932), 221–228.
- 5. G. Sansone and R. Conti, Non-linear differential equations, Pergamon Press, Oxford, 1964. MR 31 #1417.
- 6. F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83-93. MR 6, 203.
- 7. G. Vidossich, Most of successive approximations do converge, J. Math. Anal. Appl. 45 (1974), 127-131. MR 49 #686.

Università degli Studi, Istituto Matematico "U. Dini", Viali Morgagni 67/A, I 50134 Firenze, Italy

INSTYTUT MATEMATYKI AGH, AL. MICKIEWICZA 30, 30-059 KRAKÓW, POLOGNE